12 research outputs found

    Hybrid token-CDMA MAC protocol for wireless networks.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2009.Ad hoc networks are commonly known to implement IEEE 802.11 standard as their medium access control (MAC) protocol. It is well known that token passing MAC schemes outperform carrier-sense-multiple-access (CSMA) schemes, therefore, token passing MAC protocols have gained popularity in recent years. In recent years, the research extends the concept of token passing ' scheme to wireless settings since they have the potential of achieving higher channel utilization than CSMA type schemes. In this thesis, a hybrid Token-CDMA MAC protocol that is based on a token passing scheme with the incorporation of code division multiple access (CDMA) is introduced. Using a dynamic code distribution algorithm and a modified leaky-bucket policing system, the hybrid protocol is able to provide both Quality of Service (QoS) and high network resource utilization, while ensuring the stability of a network. This thesis begins with the introduction of a new MAC protocol based on a token-passing strategy. The input traffic model used in the simulation is a two-state Markov Modulated Poisson Process (MMPP). The data rate QoS is enforced by implementing a modified leaky bucket mechanism in the proposed MAC scheme. The simulation also takes into account channel link errors caused by the wireless link by implementing a multi-layered Gilbert-Elliot model. The performance of the proposed MAC scheme is examined by simulation, and compared to the performance of other MAC protocols published in the literature. Simulation results demonstrate that the proposed hybrid MAC scheme is effective in decreasing packet delay and significantly shortens the length of the queue. The thesis continues with the discussion of the analytical model for the hybrid Token CDMA protocol. The proposed MAC scheme is analytically modelled as a multiserver multiqueue (MSMQ) system with a gated service discipline. The analytical model is categorized into three sections viz. the vacation model, the input model and the buffer model. The throughput and delay performance are then computed and shown to closely match the simulation results. Lastly, cross-layer optimization between the physical (PHY) and MAC layers for the hybrid token-CDMA scheme is discussed. The proposed joint PHY -MAC approach is based on the interaction between the two layers in order to enable the stations to dynamically adjust the transmission parameters resulting in reduced mutual interference and optimum system performance

    High speed protocols for dual bus and dual ring network architectures

    Get PDF
    In this dissertation, two channel access mechanisms providing fair and bandwidth efficient transmission on dual bus and dual ring networks with high bandwidth-latency product are proposed. In addition, two effective priority mechanisms are introduced to meet the throughput and delay requirements of the diverse arrays of applications that future high speed networks must support. For dual bus architectures, the Buffer Insertion Bandwidth Balancing (BI_BWB) mechanism and the Preemptive priority Bandwidth Balancing (P_BI_BWB) mechanism are proposed. BI_BWB can significantly improve the delay performance of remote stations. It achieves that by providing each station with a shift register into which the station can temporarily store the upstream stations\u27 transmitted packets and replace these packets with its own transmissions. P_BI_BWB, an enhancement of BI_BWB, is designed to introduce effective preemptive priorities. This mechanism eliminates the effect of low priority on high priority by buffering the low priority traffic into a shift register until the transmission of the high priority traffic is complete. For dual ring architectures, the Fair Bandwidth Allocation Mechanism (FBAM) and the Effective Priority Bandwidth Balancing (EP_BWB) mechanism are introduced. FBAM allows stations to reserve channel bandwidth on a continuous basis rather than wait until bandwidth starvation is observed. Consequently, FBAM does not have to deal with the difficult issue of identifying starvation, a serious drawback of other access mechanisms such as the Local and Global Fairness Algorithms (LFA and GFA, respectively). In addition, its operation requires a significantly smaller number of control bits in the access control field of the slot and its performance is less sensitive to system parameters. Moreover, FBAM demonstrates Max-Min flow control properties with respect to the allocation of bandwidth among competing traffic streams, which is a significant advantage of FBAM over all the previously proposed channel access mechanisms. EP_BWB, an enhancement of FBAM to support preemptive priorities, minimizes the effect of low priority on high priority and supports delay-sensitive traffic by enabling higher priority classes to preempt the transmissions of lower priority classes. Finally, the great potential of EP_BWB to support the interconnection of base stations on a distributed control wireless PCN carrying voice and data traffic is demonstrated

    Pipeline rings and integrated services rings.

    Get PDF
    Wong, Po-Choi.Summary in Chinese.Thesis (Ph.D.)--Chinese University of Hong Kong, 1989.Bibliography: leaves 156-164

    An investigation into intelligent network congestion control strategies

    Get PDF
    This thesis examines the congestion control issues that arise in Intelligent Networks, when it is necessary to support multiple service types with different load requirements and priorities. The area of Intelligent Network (IN) congestion control has been under investigation for over a decade, but in general, the models used in this research were over-simplified and all service types were assumed to have the same priority levels and load requirements at the various IN physical elements. However, as the IN is a dynamic network that must process many different service types that have radically different call load profiles and are based on different service level agreements and charging schemes, the validity of the above assumptions is questionable. The aim of this work, therefore, is to remove a number of the classic assumptions made in IN congestion control research, by: • developing a detailed model of an IN, catering for multiple traffic types, • using this model to establish the shortcomings of classic congestion control strategies, • devising a new IN congestion control strategy and verifying its superiority on the model. To achieve these aims, an IN model (both simulation and analytic) is developed to reflect the physical and functional architecture of the network and model the information flows required between network entities in order to execute services. The effectiveness of various classic active and reactive congestion control strategies are then investigated using this model and it is established that none of these strategies are capable of protecting both the Service Control Point and Service Switching Points under all possible traffic mixes and loads. This is partially due to the fact that all of these strategies are based on the use of fixed parameters (and are therefore not flexible enough to deal with IN traffic) and partially because none of these strategies take into account the different load requirements of the different service types. A new, flexible strategy is then devised to facilitate global IN congestion control and cater for service types with different characteristics. This strategy maximises IN performance by protecting all network elements from overload while maximising network revenue and preserving fairness between service types during overload. A number of factors determining the relative importance or weight of different traffic types are also identified and used by the strategy to maintain call importance during overload. The efficiency of this strategy is demonstrated by comparing its operation to that of the best classic IN overload controls and also to a new strategy, which has scalable and dynamic behaviour (and which was devised for the purpose of providing a fair comparison to the optimisation strategy). The optimisation-based strategy and dynamic strategy are found to be equally effective and far superior to the classic strategies. However, the optimisation algorithm also preserves relative importance and fairness, while maximising network revenue - but at the cost of a not insignificant processing overhead

    Throughput optimization in MPR-capable multi-hop wireless networks

    Get PDF
    Recent advances in the physical layer have enabled the simultaneous reception of multiple packets by a node in wireless networks. This capability has the potential of improving the performance of multi-hop wireless networks by a logarithmic factor with respect to current technologies. However, to fully exploit multiple packet reception (MPR) capability, new routing and scheduling schemes must be designed. These schemes need to reformulate a historically underlying assumption in wireless networks which states that any concurrent transmission of two or more packets results in a collision and failure of all packet receptions. In this work, we present a generalized model for the throughput optimization problem in MPR-capable multi-hop wireless networks. The formulation incorporates not only the MPR protocol model to quantify interference, but also the multi-access channel. The former is related with the MAC and routing layers, and considers a packet as the unit of transmission. The latter accounts for the achievable capacity of links used by simultaneous packet transmissions. The problem is modeled as a joint routing and scheduling problem. The scheduling subproblem deals with finding the optimal schedulable sets, which are defined as subsets of links that can be scheduled or activated simultaneously. Among other results, we demonstrate that any solution of the scheduling subproblem can be built with |E| + 1 or fewer schedulable sets, where |E| is the number of links of the network. This result contrasts with a conjecture that states that a solution of the scheduling subproblem, in general, is composed of an exponential number of schedulable sets. The model can be applied to a wide range of networks, such as half and full duplex systems, networks with directional and omni-directional antennas with one or multiple transmit antennas per node. Due to the hardness of the problem, we propose several polynomial time schemes based on a combination of linear programming, approximation algorithm and greedy paradigms. We illustrate the use of the proposed schemes to study the impact of several design parameters such as decoding capability and number of transmit antennas on the performance of MPR-capable networks

    Discrete Time Analysis of Consolidated Transport Processes

    Get PDF
    Diese Arbeit beschäftigt sich mit der Entwicklung zeitdiskreter Modelle zur Analyse von Transportbündelungen. Mit den entwickelten Modellen für Bestands- und Fahrzeugbündelungen, insbesondere Milkrun-Systeme, kann eine detaillierte Leistungsbewertung in kurzer Zeit durchgeführt werden. Darüber hinaus erlauben die Modelle die Analyse der Umschlagslagerbündelungen, beispielweise Hub-und-Spoke-Netzwerke, indem sie im Rahmen einer Netzwerkanalyse mit einander verknüpft werden

    Improving the Performance of Internet Data Transport

    Get PDF
    With the explosion of the World Wide Web, the Internet infrastructure faces new challenges in providing high performance for data traffic. First, it must be able to pro-vide a fair-share of congested link bandwidth to every flow. Second, since web traffic is inherently interactive, it must minimize the delay for data transfer. Recent studies have shown that queue management algorithms such as Tail Drop, RED and Blue are deficient in providing high throughput, low delay paths for a data flow. Two major shortcomings of the current algorithms are: they allow TCP flows to get synchronized and thus require large buffers during congestion to enable high throughput; and they allow unfair bandwidth usage for shorter round-trip time TCP flows. We propose algorithms using multiple queues and discard policies with hysteresis at bottleneck routers to address both these issues. Us-ing ns-2 simulations, we show that these algorithms can significantly outperform RED and Blue, especially at smaller buffer sizes. Using multiple queues raises two new concerns: scalability and excess memory bandwidth usage caused by dropping packets which have been queued. We propose and evaluate an architecture using Bloom filters to evenly distribute flows among queues to improve scalability. We have also developed new intelligent packet discard algorithms that discard packets on arrival and are able to achieve performance close to that of policies that may discard packets that have already been queued. Finally, we propose better methods for evaluating the performance of fair-queueing methods. In the current literature, fair-queueing methods are evaluated based on their worst-case performance. This can exaggerate the differences among algorithms, since the worst-case behavior is dependent on the the precise timing of packet arrivals. This work seeks to understand what happens under more typical circumstances

    Compositional approach to performance modelling

    Get PDF

    Medium access control mechanisms for high speed metropolitan area networks

    Get PDF
    In this dissertation novel Medium Access Control mechanisms for High Speed Metropolitan Area networks are proposed and their performance is investigated under the presence of single and multiple priority classes of traffic. The proposed mechanisms are based on the Distributed Queue Dual Bus network, which has been adopted by the IEEE standardization committee as the 802.6 standard for Metropolitan Area Networks, and address most of its performance limitations. First, the Rotating Slot Generator scheme is introduced which uses the looped bus architecture that has been proposed for the 802.6 network. According to this scheme the responsibility for generating slots moves periodically from station to station around the loop. In this way, the positions of the stations relative to the slot generator change continuously, and therefore, there are no favorable locations on the busses. Then, two variations of a new bandwidth balancing mechanism, the NSW_BWB and ITU_NSW are introduced. Their main advantage is that their operation does not require the wastage of channel slots and for this reason they can converge very fast to the steady state, where the fair bandwidth allocation is achieved. Their performance and their ability to support multiple priority classes of traffic are thoroughly investigated. Analytic estimates for the stations\u27 throughputs and average segment delays are provided. Moreover, a novel, very effective priority mechanism is introduced which can guarantee almost immediate access for high priority traffic, regardless of the presence of lower priority traffic. Its performance is thoroughly investigated and its ability to support real time traffic, such as voice and video, is demonstrated. Finally, the performance under the presence of erasure nodes of the various mechanisms that have been proposed in this dissertation is examined and compared to the corresponding performance of the most prominent existing mechanisms
    corecore