13,853 research outputs found

    Analysis of a forecasting-production-inventory system with stationary demand

    Get PDF
    Cover title. "April 1999."Includes bibliographical references (leaves 24-27).L. Beril Toktay, Lawrence M. Wein

    End-of-Life Inventory Decisions for Consumer Electronics Service Parts

    Get PDF
    We consider a consumer electronics (CE) manufacturer’s problem of controlling the inventoryof spare parts in the final phase of the service life cycle. The final phase starts when thepart production is terminated and continues until the last service contract or warranty periodexpires. Placing final orders for service parts is considered to be a popular tactic to satisfy demandduring this period and to mitigate the effect of part obsolescence at the end of the servicelife cycle. To satisfy demand for service in the final phase, previous research focuses on repairingdefective products by replacing the defective parts with properly functioning spare ones.However, for consumer electronic products there is a remarkable price erosion while repaircosts may stay steady over time. As a consequence, this introduces the idea that there mightbe a point in time at which the unit price of the product is lower than repair associated costs.Therefore, it would be more cost effective to adopt an alternative policy to meet demands forservice such as offering customers a replacement of the defective product with a new one orgiving a discount on the next generation of the product. This paper examines the cost trade-offsof implementing alternative policies for the repair policy and develops an exact formulation forthe expected total cost function. Based on this developed cost function we propose policies tosimultaneously find the optimal final order quantity and the time to switch from the repair toan alternative replacement policy. Numerical analysis of a real world case study sheds lightover the effectiveness and advantage of these policies in terms of cost reduction and also yieldsinsights into the quantitative importance of the various cost parameters.consumer electronics;end-of-life inventory control;service parts

    Reliability-based economic model predictive control for generalized flow-based networks including actuators' health-aware capabilities

    Get PDF
    This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalized flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamically allocate safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the considered case study.Peer ReviewedPostprint (author's final draft

    Dampening variability by using smoothing replenishment rules.

    Get PDF
    A major cause of supply chain deficiencies is the bullwhip effect which can be substantial even over a single echelon. This effect refers to the tendency of the variance of the replenishment orders to increase as it moves up a supply chain. Supply chain managers experience this variance amplification in both inventory levels and replenishment orders. As a result, companies face shortages or bloated inventories, run-away transportation and warehousing costs and major production adjustment costs. In this article we analyse a major cause of the bullwhip effect and suggest a remedy. We focus on a smoothing replenishment rule that is able to reduce the bullwhip effect across a single echelon. In general, dampening variability in orders may have a negative impact on customer service due to inventory variance increases. We therefore quantify the variance of the net stock and compute the required safety stock as a function of the smoothing required. Our analysis shows that bullwhip can be satisfactorily managed without unduly increasing stock levels to maintain target fill rates.Bullwhip effect; Companies; Cost; Costs; Impact; Inventory; Managers; Order; Replenishment rule; Rules; Safety stock; Supply chain; Supply chain management; Variability; Variance; Variance reduction;

    Demand uncertainty and lot sizing in manufacturing systems: the effects of forecasting errors and mis-specification

    Get PDF
    This paper proposes a methodology for examining the effect of demand uncertainty and forecast error on lot sizing methods, unit costs and customer service levels in MRP type manufacturing systems. A number of cost structures were considered which depend on the expected time between orders. A simple two-level MRP system where the product is manufactured for stock was then simulated. Stochastic demand for the final product was generated by two commonly occurring processes and with different variances. Various lot sizing rules were then used to determine the amount of product made and the amount of materials bought in. The results confirm earlier research that the behaviour of lot sizing rules is quite different when there is uncertainty in demand compared to the situation of perfect foresight of demand. The best lot sizing rules for the deterministic situation are the worst whenever there is uncertainty in demand. In addition the choice of lot sizing rule between ‘good’ rules such as the EOQ turns out to be relatively less important in reducing unit cost compared to improving forecasting accuracy whatever the cost structure. The effect of demand uncertainty on unit cost for a given service level increases exponentially as the uncertainty in the demand data increases. The paper also shows how the value of improved forecasting can be analysed by examining the effects of different sizes of forecast error in addition to demand uncertainty. In those manufacturing problems with high forecast error variance, improved forecast accuracy should lead to substantial percentage improvements in unit costs

    The effect of correlation between demands on hierarchical forecasting

    Get PDF
    The forecasting needs for inventory control purposes are hierarchical. For SKUs in a product family or a SKU stored across different depot locations, forecasts can be made from the individual series’ history or derived top-down. Many discussions have been found in the literature, but it is not clear under what conditions one approach is better than the other. Correlation between demands has been identified as a very important factor to affect the performance of the two approaches, but there has been much confusion on whether positive or negative correlation. This paper summarises the conflicting discussions in the literature, argues that it is negative correlation that benefits the top-down or grouping approach, and quantifies the effect of correlation through simulation experiments
    corecore