13,997 research outputs found

    Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates

    Get PDF
    We analyze stability of equilibria for a delayed SIR epidemic model, in which population growth is subject to logistic growth in absence of disease, with a nonlinear incidence rate satisfying suitable monotonicity conditions. The model admits a unique endemic equilibrium if and only if the basic reproduction number R 0 exceeds one, while the trivial equilibrium and the disease-free equilibrium always exist. First we show that the disease-free equilibrium is globally asymptotically stable if and only if R 0 ≤ 1. Second we show that the model is permanent if and only if R 0 > 1. Moreover, using a threshold parameter R 0 characterized by the nonlinear incidence function, we establish that the endemic equilibrium is locally asymptotically stable for 1< R0≤R 0 and it loses stability as the length of the delay increases past a critical value for 1<R 0< R0. Our result is an extension of the stability results in [J.-J. Wang, J.-Z. Zhang, Z. Jin, Analysis of an SIR model with bilinear incidence rate, Nonlinear Anal. RWA 11 (2009) 2390-2402]

    Stochastic epidemic SEIRS models with a constant latency period

    Full text link
    In this paper we consider the stability of a class of deterministic and stochastic SEIRS epidemic models with delay. Indeed, we assume that the transmission rate could be stochastic and the presence of a latency period of rr consecutive days, where rr is a fixed positive integer, in the "exposed" individuals class E. Studying the eigenvalues of the linearized system, we obtain conditions for the stability of the free disease equilibrium, in both the cases of the deterministic model with and without delay. In this latter case, we also get conditions for the stability of the coexistence equilibrium. In the stochastic case we are able to derive a concentration result for the random fluctuations and then, using the Lyapunov method, that under suitable assumptions the free disease equilibrium is still stable

    Stability and bifurcations in an epidemic model with varying immunity period

    Full text link
    An epidemic model with distributed time delay is derived to describe the dynamics of infectious diseases with varying immunity. It is shown that solutions are always positive, and the model has at most two steady states: disease-free and endemic. It is proved that the disease-free equilibrium is locally and globally asymptotically stable. When an endemic equilibrium exists, it is possible to analytically prove its local and global stability using Lyapunov functionals. Bifurcation analysis is performed using DDE-BIFTOOL and traceDDE to investigate different dynamical regimes in the model using numerical continuation for different values of system parameters and different integral kernels.Comment: 16 pages, 5 figure

    Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel

    Get PDF
    In this work, we investigate a stochastic epidemic model with relapse and distributed delay. First, we prove that our model possesses and unique global positive solution. Next, by means of the Lyapunov method, we determine some sufficient criteria for the extinction of the disease and its persistence. In addition, we establish the existence of a unique stationary distribution to our model. Finally, we provide some numerical simulations for the stochastic model to assist and show the applicability and efficiency of our results.Ministerio de Ciencia, Innovación y Universidades (MICINN). EspañaEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER

    Time scales of epidemic spread and risk perception on adaptive networks

    Full text link
    Incorporating dynamic contact networks and delayed awareness into a contagion model with memory, we study the spreading patterns of infectious diseases in connected populations. It is found that the spread of an infectious disease is not only related to the past exposures of an individual to the infected but also to the time scales of risk perception reflected in the social network adaptation. The epidemic threshold pcp_{c} is found to decrease with the rise of the time scale parameter s and the memory length T, they satisfy the equation pc=1T+ωTas(1−e−ωT2/as)p_{c} =\frac{1}{T}+ \frac{\omega T}{a^s(1-e^{-\omega T^2/a^s})}. Both the lifetime of the epidemic and the topological property of the evolved network are considered. The standard deviation σd\sigma_{d} of the degree distribution increases with the rise of the absorbing time tct_{c}, a power-law relation σd=mtcγ\sigma_{d}=mt_{c}^\gamma is found
    • …
    corecore