31 research outputs found

    The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells

    Get PDF
    Recent studies have shown that stellate cells (SCs) of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic) conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis), we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. ‘In vitro’ experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current

    The Interplay of Intrinsic Dynamics and Coupling in Spatially Distributed Neuronal Networks

    Get PDF
    We explore three coupled networks. Each is an example of a network whose spatially coupled behavior is dratically different than the behavior of the uncoupled system. 1. An evolution equation such that the intrinsic dynamics of the system are those near a degenerate Hopf bifurcation is explored. The coupled system is bistable and solutions such as waves and persistent localized activity are found. 2. A trapping mechanism that causes long interspike intervals in a network of Hodgkin Huxley neurons coupled with excitatory synaptic coupling is unveiled. This trapping mechanism is formed through the interaction of the time scales present intrinsically and the time scale of the synaptic decay. 3. We construct a model to create the spatial patterns reported by subjects in an experiment when their eyes were stimulated electrically. Phase locked oscillators are used to create boundaries representing phosphenes. Asymmetric coupling causes the lines to move, as in the experiment. Stable stationary solutions and waves are found in a reduced model of evolution/ convolution type

    The response of a classical Hodgkin–Huxley neuron to an inhibitory input pulse

    Get PDF
    A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30–80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchronization by an inhibitory input pulse often fails for populations of classical Hodgkin–Huxley neurons. Our reasoning suggests that in general, synchronization by inhibitory input pulses can fail when the transition of the target neurons from rest to spiking involves a Hopf bifurcation, especially when inhibition is shunting, not hyperpolarizing. Surprisingly, synchronization is more likely to fail when the inhibitory pulse is stronger or longer-lasting. These findings have potential implications for the question which neurons participate in brain rhythms, in particular in gamma oscillations

    Neuronal oscillations: from single-unit activity to emergent dynamics and back

    Get PDF
    L’objectiu principal d’aquesta tesi és avançar en la comprensió del processament d’informació en xarxes neuronals en presència d’oscil lacions subumbrals. La majoria de neurones propaguen la seva activitat elèctrica a través de sinapsis químiques que són activades, exclusivament, quan el corrent elèctric que les travessa supera un cert llindar. És per aquest motiu que les descàrregues ràpides i intenses produïdes al soma neuronal, els anomenats potencials d’acció, són considerades la unitat bàsica d’informació neuronal, és a dir, el senyal mínim i necessari per a iniciar la comunicació entre dues neurones. El codi neuronal és entès, doncs, com un llenguatge binari que expressa qualsevol missatge (estímul sensorial, memòries, etc.) en un tren de potencials d’acció. Tanmateix, cap funció cognitiva rau en la dinàmica d’una única neurona. Circuits de milers de neurones connectades entre sí donen lloc a determinats ritmes, palesos en registres d’activitat colectiva com els electroencefalogrames (EEG) o els potencials de camp local (LFP). Si els potencials d’acció de cada cèl lula, desencadenats per fluctuacions estocàstiques de les corrents sinàptiques, no assolissin un cert grau de sincronia, no apareixeria aquesta periodicitat a nivell de xarxa. Per tal de poder entendre si aquests ritmes intervenen en el codi neuronal hem estudiat tres situacions. Primer, en el Capítol 2, hem mostrat com una cadena oberta de neurones amb un potencial de membrana intrínsecament oscil latori filtra un senyal periòdic arribant per un dels extrems. La resposta de cada neurona (pulsar o no pulsar) depèn de la seva fase, de forma que cada una d’elles rep un missatge filtrat per la precedent. A més, cada potencial d’acció presinàptic provoca un canvi de fase en la neurona postsinàptica que depèn de la seva posició en l’espai de fases. Els períodes d’entrada capaços de sincronitzar les oscil lacions subumbrals són aquells que mantenen la fase d’arribada dels potencials d’acció fixa al llarg de la cadena. Per tal de què el missatge arribi intacte a la darrera neurona cal, a més a més, que aquesta fase permeti la descàrrega del voltatge transmembrana. En segon cas, hem estudiat una xarxa neuronal amb connexions tant a veïns propers com de llarg abast, on les oscil lacions subumbrals emergeixen de l’activitat col lectiva reflectida en els corrents sinàptics (o equivalentment en el LFP). Les neurones inhibidores aporten un ritme a l’excitabilitat de la xarxa, és a dir, que els episodis en què la inhibició és baixa, la probabilitat d’una descàrrega global de la població neuronal és alta. En el Capítol 3 mostrem com aquest ritme implica l’aparició d’una bretxa en la freqüència de descàrrega de les neurones: o bé polsen espaiadament en el temps o bé en ràfegues d’elevada intensitat. La fase del LFP determina l’estat de la xarxa neuronal codificant l’activitat de la població: els mínims indiquen la descàrrega simultània de moltes neurones que, ocasionalment, han superat el llindar d’excitabilitat degut a un decreixement global de la inhibició, mentre que els màxims indiquen la coexistència de ràfegues en diferents punts de la xarxa degut a decreixements locals de la inhibició en estats globals d’excitació. Aquesta dinàmica és possible gràcies al domini de la inhibició sobre l’excitació. En el Capítol 4 considerem acoblament entre dues xarxes neuronals per tal d’estudiar la interacció entre ritmes diferents. Les oscil lacions indiquen recurrència en la sincronització de l’activitat col lectiva, de manera que durant aquestes finestres temporals una població optimitza el seu impacte en una xarxa diana. Quan el ritme de la població receptora i el de l’emissora difereixen significativament, l’eficiència en la comunicació decreix, ja que les fases de màxima resposta de cada senyal LFP no mantenen una diferència constant entre elles. Finalment, en el Capítol 5 hem estudiat com les oscil lacions col lectives pròpies de l’estat de son donen lloc al fenomen de coherència estocàstica. Per a una intensitat òptima del soroll, modulat per l’excitabilitat de la xarxa, el LFP assoleix una regularitat màxima donant lloc a un període refractari de la població neuronal. En resum, aquesta Tesi mostra escenaris d’interacció entre els potencials d’acció, característics de la dinàmica de neurones individuals, i les oscil lacions subumbrals, fruit de l’acoblament entre les cèl lules i ubiqües en la dinàmica de poblacions neuronals. Els resultats obtinguts aporten funcionalitat a aquests ritmes emergents, agents sincronitzadors i moduladors de les descàrregues neuronals i reguladors de la comunicació entre xarxes neuronals.The main objective of this thesis is to better understand information processing in neuronal networks in the presence of subthreshold oscillations. Most neurons propagate their electrical activity via chemical synapses, which are only activated when the electric current that passes through them surpasses a certain threshold. Therefore, fast and intense discharges produced at the neuronal soma (the action potentials or spikes) are considered the basic unit of neuronal information. The neuronal code is understood, then, as a binary language that expresses any message (sensory stimulus, memories, etc.) in a train of action potentials. Circuits of thousands of interconnected neurons give rise to certain rhythms, revealed in collective activity measures such as electroencephalograms (EEG) and local field potentials (LFP). Synchronization of action potentials of each cell, triggered by stochastic fluctuations of the synaptic currents, cause this periodicity at the network level.To understand whether these rhythms are involved in the neuronal code we studied three situations. First, in Chapter 2, we showed how an open chain of neurons with an intrinsically oscillatory membrane potential filters a periodic signal coming from one of its ends. The response of each neuron (to spike or not) depends on its phase, so that each cell receives a message filtered by the preceding one. Each presynaptic action potential causes a phase change in the postsynaptic neuron, which depends on its position in the phase space. Those incoming periods that are able to synchronize the subthreshold oscillations, keep the phase of arrival of action potentials fixed along the chain. The original message reaches intact the last neuron provided that this phase allows the discharge of the transmembrane voltage.I the second case, we studied a neuronal network with connections to both long range and close neighbors, in which the subthreshold oscillations emerge from the collective activity apparent in the synaptic currents. The inhibitory neurons provide a rhythm to the excitability of the network. When inhibition is low, the likelihood of a global discharge of the neuronal population is high. In Chapter 3 we show how this rhythm causes a gap in the discharge frequency of neurons: either they pulse single spikes or they fire bursts of high intensity. The LFP phase determines the state of the neuronal network, coding the activity of the population: its minima indicate the simultaneous discharge of many neurons, while its maxima indicate the coexistence of bursts due to local decreases of inhibition at global states of excitation. In Chapter 4 we consider coupling between two neural networks in order to study the interaction between different rhythms. The oscillations indicate recurrence in the synchronization of collective activity, so that during these time windows a population optimizes its impact on a target network. When the rhythm of the emitter and receiver population differ significantly, the communication efficiency decreases as the phases of maximum response of each LFP signal do not maintain a constant difference between them.Finally, in Chapter 5 we studied how oscillations typical of the collective sleep state give rise to stochastic coherence. For an optimal noise intensity, modulated by the excitability of the network, the LFP reaches a maximal regularity leading to a refractory period of the neuronal population.In summary, this Thesis shows scenarios of interaction between action potentials, characteristics of the dynamics of individual neurons, and the subthreshold oscillations, outcome of the coupling between the cells and ubiquitous in the dynamics of neuronal populations . The results obtained provide functionality to these emerging rhythms, triggers of synchronization and modulator agents of the neuronal discharges and regulators of the communication between neuronal networks

    Chaos at the border of criticality

    Full text link
    The present paper points out to a novel scenario for formation of chaotic attractors in a class of models of excitable cell membranes near an Andronov-Hopf bifurcation (AHB). The mechanism underlying chaotic dynamics admits a simple and visual description in terms of the families of one-dimensional first-return maps, which are constructed using the combination of asymptotic and numerical techniques. The bifurcation structure of the continuous system (specifically, the proximity to a degenerate AHB) endows the Poincare map with distinct qualitative features such as unimodality and the presence of the boundary layer, where the map is strongly expanding. This structure of the map in turn explains the bifurcation scenarios in the continuous system including chaotic mixed-mode oscillations near the border between the regions of sub- and supercritical AHB. The proposed mechanism yields the statistical properties of the mixed-mode oscillations in this regime. The statistics predicted by the analysis of the Poincare map and those observed in the numerical experiments of the continuous system show a very good agreement.Comment: Chaos: An Interdisciplinary Journal of Nonlinear Science (tentatively, Sept 2008

    Neuron models of the generic bifurcation type:network analysis and data modeling

    Get PDF
    Minimal nonlinear dynamic neuron models of the generic bifurcation type may provide the middle way between the detailed models favored by experimentalists and the simplified threshold and rate model of computational neuroscientists. This thesis investigates to which extent generic bifurcation type models grasp the essential dynamical features that may turn out play a role in cooperative neural behavior. The thesis considers two neuron models, of increasing complexity, and one model of synaptic interactions. The FitzHugh-Nagumo model is a simple two-dimensional model capable only of spiking behavior, and the Hindmarsh-Rose model is a three-dimensional model capable of more complex dynamics such as bursting and chaos. The model for synaptic interactions is a memory-less nonlinear function, known as fast threshold modulation (FTM). By means of a combination of nonlinear system theory and bifurcation analysis the dynamical features of the two models are extracted. The most important feature of the FitzHugh-Nagumo model is its dynamic threshold: the spike threshold does not only depend on the absolute value, but also on the amplitude of changes in the membrane potential. Part of the very complex, intriguing bifurcation structure of the Hindmarsh-Rose model is revealed. By considering basic networks of FTM-coupled FitzHugh-Nagumo (spiking) or Hindmarsh-Rose (bursting) neurons, two main cooperative phenomena, synchronization and coincidence detections, are addressed. In both cases it is illustrated that pulse coupling in combination with the intrinsic dynamics of the models provides robustness. In large scale networks of FTM-coupled bursting neurons, the stability of complete synchrony is independent from the network topology and depends only on the number of inputs to each neuron. The analytical results are obtained under very restrictive and biologically implausible hypotheses, but simulations show that the theoretical predictions hold in more realistic cases as well. Finally, the realism of the models is put to a test by identification of their parameters from in vitro measurements. The identification problem is addressed by resorting to standard techniques combined with heuristics based on the results of the reported mathematical analysis and on a priori knowledge from neuroscience. The FitzHugh-Nagumo model is only able to model pyramidal neurons and even then performs worse than simple threshold models; it should be used only when the advantages of the more realistic threshold mechanism are prevalent. The Hindmarsh-Rose model can model much of the diversity of neocortical neurons; it can be used as a model in the study of heterogeneous networks and as a realistic model of a pyramidal neuron
    corecore