1,674 research outputs found

    Stochastic Control via Entropy Compression

    Get PDF
    We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succeed. Here we study whether such stochastic control is also possible in a noisy environment, where both the process of state-observation and the process of state-evolution are subject to adversarial perturbation (noise). The introduction of noise causes the tools developed for LLL algorithmization to break down since the key LLL ingredient, the sparsity of the causality (dependence) relationship, no longer holds. To overcome this challenge we develop a new analysis where entropy plays a central role, both to measure the rate at which progress towards an acceptable state is made and the rate at which noise undoes this progress. The end result is a sufficient condition that allows a smooth tradeoff between the intensity of the noise and the amenability of the system, recovering an asymmetric LLL condition in the noiseless case.Comment: 18 page

    Wireless Sensor Networks for Smart Communications

    Get PDF
    (First paragraph) In the first edition of the special issue titled “Wireless Sensor Networks for Smart Communications”, a total of 22 manuscripts were received and 6 of these were accepted. This issue demonstrated that network congestion, user mobility, and adjacent spectrum interference are the main reasons for the degradation ofcommunication quality inWireless Sensor Networks (WSNs)

    Cross-layer Perceptual ARQ for Video Communications over 802.11e Wireless Networks

    Get PDF
    This work presents an application-level perceptual ARQ algorithm for video streaming over 802.11e wireless networks. A simple and effective formula is proposed to combine the perceptual and temporal importance of each packet into a single priority value, which is then used to drive the packet-selection process at each retransmission opportunity. Compared to the standard 802.11 MAC-layer ARQ scheme, the proposed technique delivers higher perceptual quality because it can retransmit only the most perceptually important packets reducing retransmission bandwidth waste. Video streaming of H.264 test sequences has been simulated with ns in a realistic 802.11e home scenario, in which the various kinds of traffic flows have been assigned to different 802.11e access categories according to the Wi-Fi alliance WMM specification. Extensive simulations show that the proposed method consistently outperforms the standard link-layer 802.11 retransmission scheme, delivering PSNR gains up to 12 dB while achieving low transmission delay and limited impact on concurrent traffic. Moreover, comparisons with a MAC-level ARQ scheme which adapts the retry limit to the type of frame contained in packets and with an application-level deadline-based priority retransmission scheme show that the PSNR gain offered by the proposed algorithm is significant, up to 5 dB. Additional results obtained in a scenario in which the transmission relies on an intermediate node (i.e., the access point) further confirms the consistency of the perceptual ARQ performance. Finally, results obtained by varying network conditions such as congestion and channel noise levels show the consistency of the improvements achieved by the proposed algorithm

    The Design and Implementation of a Wireless Video Surveillance System.

    Get PDF
    Internet-enabled cameras pervade daily life, generating a huge amount of data, but most of the video they generate is transmitted over wires and analyzed offline with a human in the loop. The ubiquity of cameras limits the amount of video that can be sent to the cloud, especially on wireless networks where capacity is at a premium. In this paper, we present Vigil, a real-time distributed wireless surveillance system that leverages edge computing to support real-time tracking and surveillance in enterprise campuses, retail stores, and across smart cities. Vigil intelligently partitions video processing between edge computing nodes co-located with cameras and the cloud to save wireless capacity, which can then be dedicated to Wi-Fi hotspots, offsetting their cost. Novel video frame prioritization and traffic scheduling algorithms further optimize Vigil's bandwidth utilization. We have deployed Vigil across three sites in both whitespace and Wi-Fi networks. Depending on the level of activity in the scene, experimental results show that Vigil allows a video surveillance system to support a geographical area of coverage between five and 200 times greater than an approach that simply streams video over the wireless network. For a fixed region of coverage and bandwidth, Vigil outperforms the default equal throughput allocation strategy of Wi-Fi by delivering up to 25% more objects relevant to a user's query
    • …
    corecore