185,544 research outputs found

    Fossil evidence for spin alignment of SDSS galaxies in filaments

    Get PDF
    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic filaments. To this end, we constructed a catalogue of clean filaments containing edge-on galaxies. We started by applying the Multiscale Morphology Filter (MMF) technique to the galaxies in a redshift-distortion corrected version of the Sloan Digital Sky Survey DR5. From that sample we extracted those 426 filaments that contained edge-on galaxies (b/a < 0.2). These filaments were then visually classified relative to a variety of quality criteria. Statistical analysis using "feature measures" indicates that the distribution of orientations of these edge-on galaxies relative to their parent filament deviate significantly from what would be expected on the basis of a random distribution of orientations. The interpretation of this result may not be immediately apparent, but it is easy to identify a population of 14 objects whose spin axes are aligned perpendicular to the spine of the parent filament (\cos \theta < 0.2). The candidate objects are found in relatively less dense filaments. This might be expected since galaxies in such locations suffer less interaction with surrounding galaxies, and consequently better preserve their tidally induced orientations relative to the parent filament. The technique of searching for fossil evidence of alignment yields relatively few candidate objects, but it does not suffer from the dilution effects inherent in correlation analysis of large samples.Comment: 20 pages, 19 figures, slightly revised and upgraded version, accepted for publication by MNRAS. For high-res version see http://www.astro.rug.nl/~weygaert/SpinAlignJones.rev.pd

    Bayesian non-linear large scale structure inference of the Sloan Digital Sky Survey data release 7

    Full text link
    In this work we present the first non-linear, non-Gaussian full Bayesian large scale structure analysis of the cosmic density field conducted so far. The density inference is based on the Sloan Digital Sky Survey data release 7, which covers the northern galactic cap. We employ a novel Bayesian sampling algorithm, which enables us to explore the extremely high dimensional non-Gaussian, non-linear log-normal Poissonian posterior of the three dimensional density field conditional on the data. These techniques are efficiently implemented in the HADES computer algorithm and permit the precise recovery of poorly sampled objects and non-linear density fields. The non-linear density inference is performed on a 750 Mpc cube with roughly 3 Mpc grid-resolution, while accounting for systematic effects, introduced by survey geometry and selection function of the SDSS, and the correct treatment of a Poissonian shot noise contribution. Our high resolution results represent remarkably well the cosmic web structure of the cosmic density field. Filaments, voids and clusters are clearly visible. Further, we also conduct a dynamical web classification, and estimated the web type posterior distribution conditional on the SDSS data.Comment: 18 pages, 11 figure

    Web-based Tools -— NED VO Services

    Get PDF
    The NASA/IPAC Extragalactic Database (NED) is a thematic, web-based research facility in widespread use by scientists, educators, space missions, and observatory operations for observation planning, data analysis, discovery, and publication of research about objects beyond our Milky Way galaxy. NED is a portal into a systematic fusion of data from hundreds of sky surveys and tens of thousands of research publications. The contents and services span the entire electromagnetic spectrum from gamma rays through radio frequencies, and are continuously updated to reflect the current literature and releases of large-scale sky survey catalogs. NED has been on the Internet since 1990, growing in content, automation and services with the evolution of information technology. NED is the world‛s largest database of crossidentified extragalactic objects. As of December 2006, the system contains approximately 10 million objects and 15 million multi-wavelength cross-IDs. Over 4 thousand catalogs and published lists covering the entire electromagnetic spectrum have had their objects cross-identified or associated, with fundamental data parameters federated for convenient queries and retrieval. This chapter describes the interoperability of NED services with other components of the Virtual Observatory (VO). Section 1 is a brief overview of the primary NED web services. Section 2 provides a tutorial for using NED services currently available through the NVO Registry. The “name resolver” provides VO portals and related internet services with celestial coordinates for objects specified by catalog identifier (name); any alias can be queried because this service is based on the source cross-IDs established by NED. All major services have been updated to provide output in VOTable (XML) format that can be accessed directly from the NED web interface or using the NVO registry. These include access to images via SIAP, Cone- Search queries, and services providing fundamental, multi-wavelength extragalactic data such as positions, redshifts, photometry and spectral energy distributions (SEDs), and sizes (all with references and uncertainties when available). Section 3 summarizes the advantages of accessing the NED “name resolver” and other NED services via the web to replace the legacy “server mode” custom data structure previously available through a function library provided only in the C programming language. Section 4 illustrates visualization via VOPlot of an SED and the spatial distribution of sources from a NED All-Sky (By Parameters) query. Section 5 describes the new NED Spectral Archive, illustrating how VOTables are being used to standardize the data and metadata as well as the physical units of spectra made available by authors of journal articles and producers of major survey archives; quick-look spectral analysis through convenient interoperability with the SpecView (STScI) Java applet is also shown. Section 6 closes with a summary of the capabilities described herein, which greatly simplify interoperability of NED with other components of the VO, enabling new opportunities for discovery, visualization, and analysis of multiwavelength data

    Caching and Distributing Statistical Analyses in R

    Get PDF
    We present the cacher package for R, which provides tools for caching statistical analyses and for distributing these analyses to others in an efficient manner. The cacher package takes objects created by evaluating R expressions and stores them in key-value databases. These databases of cached objects can subsequently be assembled into packages for distribution over the web. The cacher package also provides tools to help readers examine the data and code in a statistical analysis and reproduce, modify, or improve upon the results. In addition, readers can easily conduct alternate analyses of the data. We describe the design and implementation of the cacher package and provide two examples of how the package can be used for reproducible research

    Star Clusters in M31: I. A Catalog and a Study of the Young Clusters

    Get PDF
    We present an updated catalog of 1300 objects in the field of M31, including 670 likely star clusters of various types. Archival images were inspected to confirm cluster classifications where possible, but most of the classifications were based on spectra taken of ~1000 objects with the Hectospec fiber positioner and spectrograph on the 6.5m MMT. The spectra and images of young clusters are analyzed in detail in this paper. Ages, reddenings and masses of 140 young clusters are derived by comparing the observed spectra and photometry with model spectra. We find these to have masses as great as 10^5 with a median of 10^4 M_sun, and a median age of 0.25 Gyr. Thus these clusters are similar in mass to the LMC young massive clusters, and are in between Milky Way open clusters and the globulars of M31 and the Milky Way. Most of the M31 young clusters have the low concentration typical of Milky Way open clusters, and we expect that most of these will be disrupted in the next Gyr, but a few have high concentrations and will likely survive longer. The spatial distribution of the young clusters is well correlated with the star-forming regions as mapped out by mid-IR emission. A kinematic analysis likewise confirms the spatial association of the young clusters with the young disk in M31.Comment: 18 pages of text and figures, 23 of tables, to appear in AJ. http://www.cfa.harvard.edu/oir/eg/m31clusters/M31_Hectospec.html is a new M31 web site containing tables and postage stamp images of the entire catalo

    On the Intrinsic Locality Properties of Web Reference Streams

    Full text link
    There has been considerable work done in the study of Web reference streams: sequences of requests for Web objects. In particular, many studies have looked at the locality properties of such streams, because of the impact of locality on the design and performance of caching and prefetching systems. However, a general framework for understanding why reference streams exhibit given locality properties has not yet emerged. In this work we take a first step in this direction, based on viewing the Web as a set of reference streams that are transformed by Web components (clients, servers, and intermediaries). We propose a graph-based framework for describing this collection of streams and components. We identify three basic stream transformations that occur at nodes of the graph: aggregation, disaggregation and filtering, and we show how these transformations can be used to abstract the effects of different Web components on their associated reference streams. This view allows a structured approach to the analysis of why reference streams show given properties at different points in the Web. Applying this approach to the study of locality requires good metrics for locality. These metrics must meet three criteria: 1) they must accurately capture temporal locality; 2) they must be independent of trace artifacts such as trace length; and 3) they must not involve manual procedures or model-based assumptions. We describe two metrics meeting these criteria that each capture a different kind of temporal locality in reference streams. The popularity component of temporal locality is captured by entropy, while the correlation component is captured by interreference coefficient of variation. We argue that these metrics are more natural and more useful than previously proposed metrics for temporal locality. We use this framework to analyze a diverse set of Web reference traces. We find that this framework can shed light on how and why locality properties vary across different locations in the Web topology. For example, we find that filtering and aggregation have opposing effects on the popularity component of the temporal locality, which helps to explain why multilevel caching can be effective in the Web. Furthermore, we find that all transformations tend to diminish the correlation component of temporal locality, which has implications for the utility of different cache replacement policies at different points in the Web.National Science Foundation (ANI-9986397, ANI-0095988); CNPq-Brazi

    Analysis of dependence among size, rate and duration in internet flows

    Get PDF
    In this paper we examine rigorously the evidence for dependence among data size, transfer rate and duration in Internet flows. We emphasize two statistical approaches for studying dependence, including Pearson's correlation coefficient and the extremal dependence analysis method. We apply these methods to large data sets of packet traces from three networks. Our major results show that Pearson's correlation coefficients between size and duration are much smaller than one might expect. We also find that correlation coefficients between size and rate are generally small and can be strongly affected by applying thresholds to size or duration. Based on Transmission Control Protocol connection startup mechanisms, we argue that thresholds on size should be more useful than thresholds on duration in the analysis of correlations. Using extremal dependence analysis, we draw a similar conclusion, finding remarkable independence for extremal values of size and rate.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS268 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore