1,633 research outputs found

    Randomized cache placement for eliminating conflicts

    Get PDF
    Applications with regular patterns of memory access can experience high levels of cache conflict misses. In shared-memory multiprocessors conflict misses can be increased significantly by the data transpositions required for parallelization. Techniques such as blocking which are introduced within a single thread to improve locality, can result in yet more conflict misses. The tension between minimizing cache conflicts and the other transformations needed for efficient parallelization leads to complex optimization problems for parallelizing compilers. This paper shows how the introduction of a pseudorandom element into the cache index function can effectively eliminate repetitive conflict misses and produce a cache where miss ratio depends solely on working set behavior. We examine the impact of pseudorandom cache indexing on processor cycle times and present practical solutions to some of the major implementation issues for this type of cache. Our conclusions are supported by simulations of a superscalar out-of-order processor executing the SPEC95 benchmarks, as well as from cache simulations of individual loop kernels to illustrate specific effects. We present measurements of instructions committed per cycle (IPC) when comparing the performance of different cache architectures on whole-program benchmarks such as the SPEC95 suite.Peer ReviewedPostprint (published version

    Access to vectors in multi-module memories

    Get PDF
    The poor bandwidth obtained from memory when conflicts arise in the modules or in the interconnection network degrades the performance of computers. Address transformation schemes, such as interleaving, skewing and linear transformations, have been proposed to achieve conflict-free access for streams with constant stride. However, this is achieved only for some strides. In this paper, we summarize a mechanism to request the elements in an out-of-order way which allows to achieve conflict-free access for a larger number of strides. We study the cases of a single vector processor and of a vector multiprocessor system. For this latter case, we propose a synchronous mode of accessing memory that can be applied in SIMD machines or in MIMD systems with decoupled access and execution.Peer ReviewedPostprint (published version

    Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks

    Full text link
    Existing question answering methods infer answers either from a knowledge base or from raw text. While knowledge base (KB) methods are good at answering compositional questions, their performance is often affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that are absent in the KB, however in an unstructured form. {\it Universal schema} can support reasoning on the union of both structured KBs and unstructured text by aligning them in a common embedded space. In this paper we extend universal schema to natural language question answering, employing \emph{memory networks} to attend to the large body of facts in the combination of text and KB. Our models can be trained in an end-to-end fashion on question-answer pairs. Evaluation results on \spades fill-in-the-blank question answering dataset show that exploiting universal schema for question answering is better than using either a KB or text alone. This model also outperforms the current state-of-the-art by 8.5 F1F_1 points.\footnote{Code and data available in \url{https://rajarshd.github.io/TextKBQA}}Comment: ACL 2017 (short

    Affine Vector Cache for memory bandwidth savings

    Get PDF
    Preserving memory locality is a major issue in highly-multithreaded architectures such as GPUs. These architectures hide latency by maintaining a large number of threads in flight. As each thread needs to maintain a private working set, all threads collectively put tremendous pressure on on-chip memory arrays, at significant cost in area and power. We show that thread-private data in GPU-like implicit SIMD architectures can be compressed by a factor up to 16 by taking advantage of correlations between values held by different threads. We propose the Affine Vector Cache, a compressed cache design that complements the first level cache. Evaluation by simulation on the SDK and Rodinia benchmarks shows that a 32KB L1 cache assisted by a 16KB AVC presents a 59% larger usable capacity on average compared to a single 48KB L1 cache. It results in a global performance increase of 5.7% along with an energy reduction of 11% for a negligible hardware cost

    Computing with Spintronics: Circuits and architectures

    Get PDF
    This thesis makes the following contributions towards the design of computing platforms with spintronic devices. 1) It explores the use of spintronic memories in the design of a domain-specific processor for an emerging class of data-intensive applications, namely recognition, mining and synthesis (RMS). Two different spintronic memory technologies — Domain Wall Memory (DWM) and STT-MRAM — are utilized to realize the different levels in the memory hierarchy of the domain-specific processor, based on their respective access characteristics. Architectural tradeoffs created by the use of spintronic memories are analyzed. The proposed design achieves 1.5X-4X improvements in energy-delay product compared to a CMOS baseline. 2) It describes the first attempt to use DWM in the cache hierarchy of general-purpose processors. DWM promises unparalleled density by packing several bits of data into each bit-cell. TapeCache, the proposed DWM-based cache architecture, utilizes suitable circuit and architectural optimizations to address two key challenges (i) the high energy and latency requirement of write operations and (ii) the need for shift operations to access the data stored in each DWM bit-cell. At the circuit level, DWM bit-cells that are tailored to the distinct design requirements of different levels in the cache hierarchy are proposed. At the architecture level, TapeCache proposes suitable cache organization and management policies to alleviate the performance impact of shift operations required to access data stored in DWM bit-cells. TapeCache achieves more than 7X improvements in both cache area and energy with virtually identical performance compared to an SRAM-based cache hierarchy. 3) It investigates the design of the on-chip memory hierarchy of general-purpose graphics processing units (GPGPUs)—massively parallel processors that are optimized for data-intensive high-throughput workloads—using DWM. STAG, a high density, energy-efficient Spintronic- Tape Architecture for GPGPU cache hierarchies is described. STAG utilizes different DWM bit-cells to realize different memory arrays in the GPGPU cache hierarchy. To address the challenge of high access latencies due to shifts, STAG predicts upcoming cache accesses by leveraging unique characteristics of GPGPU architectures and workloads, and prefetches data that are both likely to be accessed and require large numbers of shift operations. STAG achieves 3.3X energy reduction and 12.1% performance improvement over CMOS SRAM under iso-area conditions. 4) While the potential of spintronic devices for memories is widely recognized, their utility in realizing logic is much less clear. The thesis presents Spintastic, a new paradigm that utilizes Stochastic Computing (SC) to realize spintronic logic. In SC, data is encoded in the form of pseudo-random bitstreams, such that the probability of a \u271\u27 in a bitstream corresponds to the numerical value that it represents. SC can enable compact, low-complexity logic implementations of various arithmetic functions. Spintastic establishes the synergy between stochastic computing and spin-based logic by demonstrating that they mutually alleviate each other\u27s limitations. On the one hand, various building blocks of SC, which incur significant overheads in CMOS implementations, can be efficiently realized by exploiting the physical characteristics of spin devices. On the other hand, the reduced logic complexity and low logic depth of SC circuits alleviates the shortcomings of spintronic logic. Based on this insight, the design of spin-based stochastic arithmetic circuits, bitstream generators, bitstream permuters and stochastic-to-binary converter circuits are presented. Spintastic achieves 7.1X energy reduction over CMOS implementations for a wide range of benchmarks from the image processing, signal processing, and RMS application domains. 5) In order to evaluate the proposed spintronic designs, the thesis describes various device-to-architecture modeling frameworks. Starting with devices models that are calibrated to measurements, the characteristics of spintronic devices are successively abstracted into circuit-level and architectural models, which are incorporated into suitable simulation frameworks. (Abstract shortened by UMI.

    Using Prime Numbers for Cache Indexing to Eliminate Conflict Misses, HPCA

    Get PDF
    Using alternative cache indexing/hashing functions is a popular technique to reduce conflict misses by achieving a more uniform cache access distribution across the sets in the cache. Although various alternative hashing functions have been demonstrated to eliminate the worst case conflict behavior, no study has really analyzed the pathological behavior of such hashing functions that often result in performance slowdown. In this paper, we present an in-depth analysis of the pathological behavior of cache hashing functions. Based on the analysis, we propose two new hashing functions: prime modulo and prime displacement that are resistant to pathological behavior and yet are able to eliminate the worst case conflict behavior in the L2 cache. We show that these two schemes can be implemented in fast hardware using a set of narrow add operations, with negligible fragmentation in the L2 cache. We evaluate the schemes on 23 memory intensive applications. For applications that have non-uniform cache accesses, both prime modulo and prime displacement hashing achieve an average speedup of 1.27 compared to traditional hashing, without slowing down any of the 23 benchmarks. We also evaluate using multiple prime displacement hashing functions in conjunction with a skewed associative L2 cache. The skewed associative cache achieves a better average speedup at the cost of some pathological behavior that slows down four applications by up to 7%. 1
    • …
    corecore