74 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Grid Technologies for Intelligent Autonomous Robot Swarms

    Get PDF

    Task Allocation Strategies in Multi-Robot Environment

    Get PDF
    Multirobot systems (MRS) hold the promise of improved performance and increased fault tolerance for large-scale problems. A robot team can accomplish a given task more quickly than a single agent by executing them concurrently. A team can also make effective use of specialists designed for a single purpose rather than requiring that a single robot be a generalist. Multirobot coordination, however, is a complex problem. An empirical study is described in the thesis that sought general guidelines for task allocation strategies. Different strategies are identified, and demonstrated in the multi-robot environment.Robot selection is one of the critical issues in the design of robotic workcells. Robot selection for an application is generally done based on experience, intuition and at most using the kinematic considerations like workspace, manipulability, etc. This problem has become more difficult in recent years due to increasing complexity, available features, and facilities offered by different robotic products. A systematic procedure is developed for selection of robot manipulators based on their different pertinent attributes. The robot selection procedure allows rapid convergence from a very large number of candidate robots to a manageable shortlist of potentially suitable robots. Subsequently, the selection procedure proceeds to rank the alternatives in the shortlist by employing different attributes based specification methods. This is an attempt to create exhaustive procedure by identifying maximum possible number of attributes for robot manipulators.Availability of large number of robot configurations has made the robot workcell designers think over the issue of selecting the most suitable one for a given set of operations. The process of selection of the appropriate kind of robot must consider the various attributes of the robot manipulator in conjunction with the requirement of the various operations for accomplishing the task. The present work is an attempt to develop a systematic procedure for selection of robot based on an integrated model encompassing the manipulator attributes and manipulator requirements

    Multi-type Fair Resource Allocation for Distributed Multi-Robot Systems

    Get PDF
    Fair resource allocation is essential to ensure that all resource requesters acquire adequate resources and accomplish tasks. We propose solutions to the fairness problem in multi-type resource allocation for multi-robot systems that have multiple resource requesters. We apply the dominant resource fairness (DRF) principle in our solutions to two different systems: single-tasking robots with multi-robot tasks (STR-MRT) and multi-tasking robots with single-robot tasks (MTR-SRT). In STR-MRT, each robot can perform only one task at a time, tasks are divisible, and accomplishing each task requires one or more robots. In MTR-SRT, each robot can perform multiple tasks at a time, tasks are not divisible, and accomplishing each task requires only one robot. We present centralized solutions to the fairness problem in STR-MRT. Meanwhile, we model the decentralized resource allocation in STR-MRT as a coordination game between the robots. Each robot subgroup is formed by robots that strategically select the same resource requester. For a requester associated with a specific subgroup, a consensus-based team formation algorithm further chooses the minimal set of robots to accomplish the task. We leverage the Deep Q-learning Network (DQN) to support requester selection. The results suggest that the DQN outperforms the commonly used Q-learning. Finally, we propose two decentralized solutions to promote fair resource allocation in MTR-SRT, as a centralized solution already exists. We first propose a task-forwarding solution in which the robots need to negotiate the placement of each task. In our second solution, each robot first selects resource requesters and then independently allocates resources to tasks that arrive from the selected requesters. The resource-requester selection phase of the latter solution models a coordination game that is solved by reinforcement learning. The experimental results suggest that both approaches outperform their baselines
    corecore