19 research outputs found

    Exponential pseudo-splines: Looking beyond exponential B-splines

    Get PDF
    Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reproduction, a new family of functions is obtained. This new family is here constructed and called the family of exponential pseudo-splines. It is the nonstationary counterpart of (polynomial) pseudo-splines and includes exponential B-splines as a special subclass. In this work we provide a computational strategy for deriving the explicit expression of the Laurent polynomial sequence that identifies the family of exponential pseudo-spline nonstationary subdivision schemes. For this family we study its symmetry properties and perform its convergence and regularity analysis. Finally, we also show that the family of primal exponential pseudo-splines fills in the gap between exponential B-splines and interpolatory cardinal functions. This extends the analogous property of primal pseudo-spline stationary subdivision schemes

    Stationary multivariate subdivision: Joint spectral radius and asymptotic similarity

    Get PDF
    In this paper we study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We present a new numerically efficient method for checking convergence and H ̈older regularity of such schemes. This method relies on the concepts of approximate sum rules, asymptotic similarity and the so-called joint spectral radius of a finite set of square matrices. The combination of these concepts allows us to employ recent advances in linear algebra for exact computation of the joint spectral radius that have had already a great impact on studies of stationary subdivision schemes. We also expose the limitations of non-stationary schemes in their capability to reproduce and generate certain function spaces. We illustrate our results with several examples

    Convergence of univariate non-stationary subdivision schemes via asymptotical similarity

    Get PDF
    A new equivalence notion between non-stationary subdivision schemes, termed asymptotical similarity, which is weaker than asymptotical equivalence, is introduced and studied. It is known that asymptotical equivalence between a non-stationary subdivision scheme and a convergent stationary scheme guarantees the convergence of the non-stationary scheme. We show that for non-stationary schemes reproducing constants, the condition of asymptotical equivalence can be relaxed to asymptotical similarity. This result applies to a wide class of non-stationary schemes of importance in theory and applications

    On four-point penalized Lagrange subdivision schemes

    No full text
    International audienceThis paper is devoted to the definition and analysis of new subdivision schemes called penalized Lagrange. Their construction is based on an originalreformulation for the construction of the coefficients of the mask associated to the classical 44-points Lagrange interpolatory subdivision scheme: these coefficients can be formallyinterpreted as the solution of a linear system similar to the one resulting from the constrained minimization problem in Kriging theory which is commonly used for reconstruction in geostatistical studies. In sucha framework, the introduction in the formulation of a so-called error variance can be viewed as a penalization of the oscillations of the coefficients.Following this idea, we propose to penalize the 44-points Lagrange system. This penalization transforms the interpolatory schemes into approximating ones with specific properties suitable for the subdivision of locallynoisy or strongly oscillating data. According to a so-called penalization vector, a family of schemes can be generated. A full theoretical study is first performed to analyze this new type of non stationary subdivision schemes. Then, in the framework of position dependant penalization vector, several numerical tests are provided to point out the efficiency of these schemes comparedto standard approaches

    Non-linear subdivision using local spherical coordinates

    Get PDF
    In this paper, we present an original non-linear subdivision scheme suitable for univariate data, plane curves and discrete triangulated surfaces, while keeping the complexity acceptable. The proposed technique is compared to linear subdivision methods having an identical support. Numerical criteria are proposed to verify basic properties, such as convergence of the scheme and the regularity of the limit function

    Non-linear subdivision of univariate signals and discrete surfaces

    Get PDF
    During the last 20 years, the joint expansion of computing power, computer graphics, networking capabilities and multiresolution analysis have stimulated several research domains, and developed the need for new types of data such as 3D models, i.e. discrete surfaces. In the intersection between multiresolution analysis and computer graphics, subdivision methods, i.e. iterative refinement procedures of curves or surfaces, have a non-negligible place, since they are a basic component needed to adapt existing multiresolution techniques dedicated to signals and images to more complicated data such as discrete surfaces represented by polygonal meshes. Such representations are of great interest since they make polygonal meshes nearly as exible as higher level 3D model representations, such as piecewise polynomial based surfaces (e.g. NURBS, B-splines...). The generalization of subdivision methods from univariate data to polygonal meshes is relatively simple in case of a regular mesh but becomes less straightforward when handling irregularities. Moreover, in the linear univariate case, obtaining a smoother limit curve is achieved by increasing the size of the support of the subdivision scheme, which is not a trivial operation in the case of a surface subdivision scheme without a priori assumptions on the mesh. While many linear subdivision methods are available, the studies concerning more general non-linear methods are relatively sparse, whereas such techniques could be used to achieve better results without increasing the size support. The goal of this study is to propose and to analyze a binary non-linear interpolatory subdivision method. The proposed technique uses local polar coordinates to compute the positions of the newly inserted points. It is shown that the method converges toward continuous limit functions. The proposed univariate scheme is extended to triangular meshes, possibly with boundaries. In order to evaluate characteristics of the proposed scheme which are not proved analytically, numerical estimates to study convergence, regularity of the limit function and approximation order are studied and validated using known linear schemes of identical support. The convergence criterion is adapted to surface subdivision via a Hausdorff distance-based metric. The evolution of Gaussian and mean curvature of limit surfaces is also studied and compared against theoretical values when available. An application of surface subdivision to build a multiresolution representation of 3D models is also studied. In particular, the efficiency of such a representation for compression and in terms of rate-distortion of such a representation is shown. An alternate to the initial SPIHT-based encoding, based on the JPEG 2000 image compression standard method. This method makes possible partial decoding of the compressed model in both SNR-progressive and level-progressive ways, while adding only a minimal overhead when compared to SPIHT
    corecore