4,207 research outputs found

    Asymmetric Leakage from Multiplier and Collision-Based Single-Shot Side-Channel Attack

    Get PDF
    The single-shot collision attack on RSA proposed by Hanley et al. is studied focusing on the difference between two operands of multiplier. It is shown that how leakage from integer multiplier and long-integer multiplication algorithm can be asymmetric between two operands. The asymmetric leakage is verified with experiments on FPGA and micro-controller platforms. Moreover, we show an experimental result in which success and failure of the attack is determined by the order of operands. Therefore, designing operand order can be a cost-effective countermeasure. Meanwhile we also show a case in which a particular countermeasure becomes ineffective when the asymmetric leakage is considered. In addition to the above main contribution, an extension of the attack by Hanley et al. using the signal-processing technique of Big Mac Attack is presented

    Hardware architecture implemented on FPGA for protecting cryptographic keys against side-channel attacks

    Get PDF
    This paper presents a new hardware architecture designed for protecting the key of cryptographic algorithms against attacks by side-channel analysis (SCA). Unlike previous approaches already published, the fortress of the proposed architecture is based on revealing a false key. Such a false key is obtained when the leakage information, related to either the power consumption or the electromagnetic radiation (EM) emitted by the hardware device, is analysed by means of a classical statistical method. In fact, the trace of power consumption (or the EM) does not reveal any significant sign of protection in its behaviour or shape. Experimental results were obtained by using a Virtex 5 FPGA, on which a 128-bit version of the standard AES encryption algorithm was implemented. The architecture could easily be extrapolated to an ASIC device based on standard cell libraries. The system is capable of concealing the real key when various attacks are performed on the AES algorithm, using two statistical methods which are based on correlation, the Welch’s t-test and the difference of means.Peer ReviewedPostprint (author's final draft

    CSI Neural Network: Using Side-channels to Recover Your Artificial Neural Network Information

    Get PDF
    Machine learning has become mainstream across industries. Numerous examples proved the validity of it for security applications. In this work, we investigate how to reverse engineer a neural network by using only power side-channel information. To this end, we consider a multilayer perceptron as the machine learning architecture of choice and assume a non-invasive and eavesdropping attacker capable of measuring only passive side-channel leakages like power consumption, electromagnetic radiation, and reaction time. We conduct all experiments on real data and common neural net architectures in order to properly assess the applicability and extendability of those attacks. Practical results are shown on an ARM CORTEX-M3 microcontroller. Our experiments show that the side-channel attacker is capable of obtaining the following information: the activation functions used in the architecture, the number of layers and neurons in the layers, the number of output classes, and weights in the neural network. Thus, the attacker can effectively reverse engineer the network using side-channel information. Next, we show that once the attacker has the knowledge about the neural network architecture, he/she could also recover the inputs to the network with only a single-shot measurement. Finally, we discuss several mitigations one could use to thwart such attacks.Comment: 15 pages, 16 figure

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies

    A new countermeasure against side-channel attacks based on hardware-software co-design

    Get PDF
    This paper aims at presenting a new countermeasure against Side-Channel Analysis (SCA) attacks, whose implementation is based on a hardware-software co-design. The hardware architecture consists of a microprocessor, which executes the algorithm using a false key, and a coprocessor that performs several operations that are necessary to retrieve the original text that was encrypted with the real key. The coprocessor hardly affects the power consumption of the device, so that any classical attack based on such power consumption would reveal a false key. Additionally, as the operations carried out by the coprocessor are performed in parallel with the microprocessor, the execution time devoted for encrypting a specific text is not affected by the proposed countermeasure. In order to verify the correctness of our proposal, the system was implemented on a Virtex 5 FPGA. Different SCA attacks were performed on several functions of AES algorithm. Experimental results show in all cases that the system is effectively protected by revealing a false encryption key.Peer ReviewedPreprin
    corecore