2,538 research outputs found

    NEWSKY - A concept for NEtWorking the SKY for civil aeronautical communications

    Get PDF
    In this paper, an overview of the NEWSKY project is given. This project is funded by the European Commission within the 6th framework program and will start in January 2007. The NEWSKY project is a feasibility study to clarify if it is possible to establish a heterogeneous network for aeronautical communications which is capable to integrate different communications systems as well as different applications into a single global aeronautical network. The envisaged applications comprise not only air-traffic control and management but also airline and passenger communications

    Design of Ad Hoc Wireless Mesh Networks Formed by Unmanned Aerial Vehicles with Advanced Mechanical Automation

    Get PDF
    Ad hoc wireless mesh networks formed by unmanned aerial vehicles (UAVs) equipped with wireless transceivers (access points (APs)) are increasingly being touted as being able to provide a flexible "on-the-fly" communications infrastructure that can collect and transmit sensor data from sensors in remote, wilderness, or disaster-hit areas. Recent advances in the mechanical automation of UAVs have resulted in separable APs and replaceable batteries that can be carried by UAVs and placed at arbitrary locations in the field. These advanced mechanized UAV mesh networks pose interesting questions in terms of the design of the network architecture and the optimal UAV scheduling algorithms. This paper studies a range of network architectures that depend on the mechanized automation (AP separation and battery replacement) capabilities of UAVs and proposes heuristic UAV scheduling algorithms for each network architecture, which are benchmarked against optimal designs.Comment: 12 page

    Real Time Airborne Monitoring for Disaster and Traffic Applications

    Get PDF
    Remote sensing applications like disaster or mass event monitoring need the acquired data and extracted information within a very short time span. Airborne sensors can acquire the data quickly and on-board processing combined with data downlink is the fastest possibility to achieve this requirement. For this purpose, a new low-cost airborne frame camera system has been developed at the German Aerospace Center (DLR) named 3K-camera. The pixel size and swath width range between 15 cm to 50 cm and 2.5 km to 8 km respectively. Within two minutes an area of approximately 10 km x 8 km can be monitored. Image data are processed onboard on five computers using data from a real time GPS/IMU system including direct georeferencing. Due to high frequency image acquisition (3 images/second) the monitoring of moving objects like vehicles and people is performed allowing wide area detailed traffic monitoring

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    The Airborne Internet

    Get PDF
    Mineralogy & gem

    Multi-dimensional modelling for the national mapping agency: a discussion of initial ideas, considerations, and challenges

    Get PDF
    The Ordnance Survey, the National Mapping Agency (NMA) for Great Britain, has recently begun to research the possible extension of its 2-dimensional geographic information into a multi-dimensional environment. Such a move creates a number of data creation and storage issues which the NMA must consider. Many of these issues are highly relevant to all NMA’s and their customers alike, and are presented and explored here. This paper offers a discussion of initial considerations which NMA’s face in the creation of multi-dimensional datasets. Such issues include assessing which objects should be mapped in 3 dimensions by a National Mapping Agency, what should be sensibly represented dynamically, and whether resolution of multi-dimensional models should change over space. This paper also offers some preliminary suggestions for the optimal creation method for any future enhanced national height model for the Ordnance Survey. This discussion includes examples of problem areas and issues in both the extraction of 3-D data and in the topological reconstruction of such. 3-D feature extraction is not a new problem. However, the degree of automation which may be achieved and the suitability of current techniques for NMA’s remains a largely unchartered research area, which this research aims to tackle. The issues presented in this paper require immediate research, and if solved adequately would mark a cartographic paradigm shift in the communication of geographic information – and could signify the beginning of the way in which NMA’s both present and interact with their customers in the future
    • 

    corecore