87 research outputs found

    Timing Jitter Analysis and Mitigation in Hybrid OFDM-DFMA PONs

    Get PDF
    Hybrid orthogonal frequency division multiplexing-digital filter multiple access passive optical networks (OFDM-DFMA PONs) offer a cost-effective solution to the challenging requirements of next-generation optical access networks and 5G and beyond radio access networks. It is crucial to consider the impact of timing jitter in any ADC/DAC-based system, therefore this paper presents an in-depth investigation into the impacts of DAC/ADC timing jitter on the hybrid OFDM-DFMA PON's performance. We introduce improved accuracy white and coloured, DAC and ADC timing jitter models, applicable to any DSP-based transmission system. We prove that DAC and ADC timing jitter effects are virtually identical and investigate the effects of white/coloured timing jitter on upstream performance in hybrid OFDM-DFMA PONs and determine the associated jitter-induced optical power penalties. To mitigate against the timing jitter-induced performance degradations, a simple, but highly effective DSP-based technique is implemented which increases robustness against the timing jitter effects and significantly reduces timing jitter-induced optical power penalties. This consequently relaxes DAC/ADC sampling clock jitter requirements and so reduces implementation costs. White (coloured) timing jitter effects are shown to be independent of (dependent on) ONU operating frequency band and a trade-off between DAC and ADC jitter levels can be exploited to reduce ONU costs

    Pipeline analog-to-digital converters for wide-band wireless communications

    Get PDF
    During the last decade, the development of the analog electronics has been dictated by the enormous growth of the wireless communications. Typical for the new communication standards has been an evolution towards higher data rates, which allows more services to be provided. Simultaneously, the boundary between analog and digital signal processing is moving closer to the antenna, thus aiming for a software defined radio. For analog-to-digital converters (ADCs) of radio receivers this indicates higher sample rate, wider bandwidth, higher resolution, and lower power dissipation. The radio receiver architectures, showing the greatest potential to meet the commercial trends, include the direct conversion receiver and the super heterodyne receiver with an ADC sampling at the intermediate frequency (IF). The pipelined ADC architecture, based on the switched capacitor (SC) technique, has most successfully covered the widely separated resolution and sample rate requirements of these receiver architectures. In this thesis, the requirements of ADCs in both of these receiver architectures are studied using the system specifications of the 3G WCDMA standard. From the standard and from the limited performance of the circuit building blocks, design constraints for pipeline ADCs, at the architectural and circuit level, are drawn. At the circuit level, novel topologies for all the essential blocks of the pipeline ADC have been developed. These include a dual-mode operational amplifier, low-power voltage reference circuits with buffering, and a floating-bulk bootstrapped switch for highly-linear IF-sampling. The emphasis has been on dynamic comparators: a new mismatch insensitive topology is proposed and measurement results for three different topologies are presented. At the architectural level, the optimization of the ADCs in the single-chip direct conversion receivers is discussed: the need for small area, low power, suppression of substrate noise, input and output interfaces, etc. Adaptation of the resolution and sample rate of a pipeline ADC, to be used in more flexible multi-mode receivers, is also an important topic included. A 6-bit 15.36-MS/s embedded CMOS pipeline ADC and an 8-bit 1/15.36-MS/s dual-mode CMOS pipeline ADC, optimized for low-power single-chip direct conversion receivers with single-channel reception, have been designed. The bandwidth of a pipeline ADC can be extended by employing parallelism to allow multi-channel reception. The errors resulted from mismatch of parallel signal paths are analyzed and their elimination is presented. Particularly, an optimal partitioning of the resolution between the stages, and the number of parallel channels, in time-interleaved ADCs are derived. A low-power 10-bit 200-MS/s CMOS parallel pipeline ADC employing double sampling and a front-end sample-and-hold (S/H) circuit is implemented. Emphasis of the thesis is on high-resolution pipeline ADCs with IF-sampling capability. The resolution is extended beyond the limits set by device matching by using calibration, while time interleaving is applied to widen the signal bandwidth. A review of calibration and error averaging techniques is presented. A simple digital self-calibration technique to compensate capacitor mismatch within a single-channel pipeline ADC, and the gain and offset mismatch between the channels of a time-interleaved ADC, is developed. The new calibration method is validated with two high-resolution BiCMOS prototypes, a 13-bit 50-MS/s single-channel and a 14-bit 160-MS/s parallel pipeline ADC, both utilizing a highly linear front-end allowing sampling from 200-MHz IF-band.reviewe

    High-Speed Delta-Sigma Data Converters for Next-Generation Wireless Communication

    Get PDF
    In recent years, Continuous-time Delta-Sigma(CT-ΔΣ) analog-to-digital converters (ADCs) have been extensively investigated for their use in wireless receivers to achieve conversion bandwidths greater than 15 MHz and higher resolution of 10 to 14 bits. This dissertation investigates the current state-of-the-art high-speed single-bit and multi-bit Continuous-time Delta-Sigma modulator (CT-ΔΣM) designs and their limitations due to circuit non-idealities in achieving the performance required for next-generation wireless standards. Also, we presented complete architectural and circuit details of a high-speed single-bit and multi-bit CT-ΔΣM operating at a sampling rate of 1.25 GSps and 640 MSps respectively (the highest reported sampling rate in a 0.13 μm CMOS technology node) with measurement results. Further, we propose novel hybrid ΔΣ architecture with two-step quantizer to alleviate the bandwidth and resolution bottlenecks associated with the contemporary CT-ΔΣM topologies. To facilitate the design with the proposed architecture, a robust systematic design method is introduced to determine the loop-filter coefficients by taking into account the non-ideal integrator response, such as the finite opamp gain and the presence of multiple parasitic poles and zeros. Further, comprehensive system-level simulation is presented to analyze the effect of two-step quantizer non-idealities such as the offset and gain error in the sub-ADCs, and the current mismatch between the MSB and LSB elements in the feedback DAC. The proposed novel architecture is demonstrated by designing a high-speed wideband 4th order CT-ΔΣ modulator prototype, employing a two-step quantizer with 5-bits resolution. The proposed modulator takes advantage of the combination of a high-resolution two-step quantization technique and an excess-loop delay (ELD) compensation of more than one clock cycle to achieve lower-power consumption (28 mW), higher dynamic range (\u3e69 dB) with a wide conversion bandwidth (20 MHz), even at a lower sampling rate of 400 MHz. The proposed modulator achieves a Figure of Merit (FoM) of 340 fJ/level

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book
    • …
    corecore