16 research outputs found

    Strained Silicon Complementary TFET SRAM: Experimental Demonstration and Simulations

    Get PDF
    A half SRAM cell with strained Si nanowire complementary tunnel-FETs (TFETs) was fabricated and characterized to explore the feasibility and functionality of 6T-SRAM based on TFETs. Outward-faced n-TFETs are used as access-transistors. Static measurements were performed to determine the SRAM butterfly curves, allowing the assessment of cell functionality and stability. The forward p-i-n leakage of the access-transistor at certain bias configurations leads to malfunctioning storage operation, even without the contribution of the ambipolar behavior. At large VDD, lowering of the bit-line bias is needed to mitigate such effect, demonstrating functional hold, read and write operations. Circuit simulations were carried out using a Verilog-A compact model calibrated on the experimental TFETs, providing a better understanding of the TFET SRAM operation at different supply voltages and for different cell sizing and giving an estimate of the dynamic performance of the cell

    Impact of TFET unidirectionality and ambipolarity on the performance of 6T SRAM cells

    Get PDF
    We use mixed device-circuit simulations to predict the performance of 6T static RAM (SRAM) cells implemented with tunnel-FETs (TFETs). Idealized template devices are used to assess the impact of device unidirectionality, which is inherent to TFETs and identify the most promising configuration for the access transistors. The same template devices are used to investigate the $ extV- m DD range, where TFETs may be advantageous compared to conventional CMOS. The impact of device ambipolarity on SRAM operation is also analyzed. Realistic device templates extracted from experimental data of fabricated state-of-the-art silicon pTFET are then used to estimate the performance gap between the simulation of idealized TFETs and the best experimental implementations

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Understanding the Potential and Limitations of Tunnel FETs for Low-Voltage Analog/Mixed-Signal Circuits

    Get PDF
    In this paper, the analog/mixed-signal performance is evaluated at device and circuit levels for a III-V nanowire tunnel field effect transistor (TFET) technology platform and compared against the predictive model for FinFETs at the 10-nm technology node. The advantages and limits of TFETs over their FinFET counterparts are discussed in detail, considering the main analog figures of merits, as well as the implementation of low-voltage track and-hold (T/H) and comparator circuits. It is found that the higher output resistance offered by TFET-based designs allows achieving significantly higher intrinsic voltage gain and higher maximum-oscillation frequency at low current levels. TFET-based T/H circuits have better accuracy and better hold performance by using the dummy switch solution for the mitigation of the charge injection. Among the comparator circuits, the TFET-based conventional dynamic architecture exhibits the best performance while keeping lower area occupation with respect to the more complex double-tail circuits. Moreover, it outperforms all the FinFET counterparts over a wide range of supply voltage when considering low values of the common-mode voltage

    Compact DC Modeling of Tunnel-FETs

    Get PDF
    En l'última dècada, el transistor d'efecte de camp amb efecte túnel (TFET) ha guanyat molt interès i es maneja com un possible successor de la tecnologia MOSFET convencional. El transport de càrrega en un TFET es basa en el mecanisme de túnel de banda a banda (B2B) i, per tant, el pendent sub-llindar a temperatura ambient pot superar el límit de 60 mV / dec. Per descriure i analitzar el comportament del TFET en les simulacions de circuits, aquesta dissertació introdueix un model compacte de CC per TFET de doble comporta. L'enfocament de modelatge considera l'efecte túnel B2B amb l'efecte parasitari del corrent túnel assistida per trampes (TAT) en l'estat ON i ambipolar del TFET. Inclou un paquet d'equacions compactes per al potencial 2D per descriure el diagrama de banda del TFET. Basat en el diagrama de banda, el B2B i el corrent TAT es deriven per separat. Per fer-ho, primer es troba una expressió compacta per la llargada túnel, que després s'utilitza juntament amb un enfocament numèric robust de tipus Wentzel-Kramers-Brillouin (WKB) per calcular la probabilitat túnel. Després, usant l'equació de túnel de Landauer, la taxa de generació túnel es calcula i s'aproxima per arribar a una expressió de forma tancada per a la densitat de corrent. Amb una aproximació addicional de la densitat de corrent utilitzant una funció matemàtica, s'aconsegueixen expressions compactes per al túnel B2B resultant i el corrent TAT. La verificació del model es realitza amb l'ajuda de les dades de simulació TCAD Sentaurus per diverses configuracions de simulació. A més, la validesa del model es demostra mitjançant mesuraments de TFET complementaris fabricats. Per demostrar l'estabilitat numèrica i la continuïtat, així com la flexibilitat, es realitzen i analitzen simulacions de circuits lògics basats en TFET com un inversor d'una sola etapa o una cel·la SRAM. La combinació del model CC amb un model TFET AC permet una simulació transitòria d'un oscil·lador en anell de 11 etapes.En la última década, el transistor de efecto de campo con efecto túnel (TFET) ha ganado mucho interés y se maneja como un posible sucesor de la tecnología MOSFET convencional. El transporte de carga en un TFET se basa en el mecanismo de túnel de banda a banda (B2B) y, por lo tanto, la pendiente sub-umbral a temperatura ambiente puede superar el límite de 60 mV / dec. Para describir y analizar el comportamiento del TFET en las simulaciones de circuitos, esta disertación introduce un modelo compacto de CC para TFET de doble compuerta. El enfoque de modelado considera el efecto túnel B2B con el efecto parasitario de la corriente túnel asistida por trampas (TAT) en el estado ON y AMBIPOLAR del TFET. Incluye un paquete de ecuaciones compactas del potencial 2D para describir el diagrama de banda del TFET. Basado en el diagrama de banda, el B2B y la corriente TAT se derivan por separado. Para hacerlo, primero se encuentra una expresión compacta para la longitud túnel, que luego se utiliza junto con un enfoque numérico robusto de tipo Wentzel-Kramers-Brillouin (WKB) para calcular la probabilidad túnel. Luego, usando la ecuación de túnel de Landauer, la tasa de generación túnel se calcula y aproxima para llegar a una expresión de forma cerrada para la densidad de corriente. Con una aproximación adicional de la densidad de corriente por una función matemática, se logran expresiones compactas para el túnel B2B resultante y la corriente TAT. La verificación del modelo se realiza con la ayuda de los datos de simulación TCAD Sentaurus para varias configuraciones de simulación. Además, la validez del modelo se demuestra mediante mediciones de TFET complementarios fabricados. Para demostrar la estabilidad numérica y la continuidad, así como la flexibilidad, se realizan y analizan simulaciones de circuitos lógicos basados en TFET como un inversor de una sola etapa o una celda SRAM. La combinación del modelo CC con un modelo TFET AC permite una simulación transitoria de un oscilador en anillo de 11 etapas.In the last decade, the tunnel field-effect transistor (TFET) has gained a lot of interest and is handled as a possible successor of the conventional MOSFET technology. The current transport of a TFET is based on the band-to-band (B2B) tunneling mechanism and therefore, the subthreshold slope at room temperature can overcome the limit of 60 mV/dec. In order to describe and analyze the TFET behavior in circuit simulations, this dissertation introduces a compact DC model for double-gate TFETs. The modeling approach considers the B2B tunneling and the parasitic effect of trap-assisted tunneling (TAT) in the ON- and AMBIPOLAR-state of the TFET. It includes a 2D compact potential equation package to de-scribe the band diagram of the TFET. Based on the band diagram, the B2B tunneling and TAT current part are derived separately. In order to do so, firstly a compact expression for the tunneling length is found, which is then used together with a numerical robust Wentzel-Kramers-Brillouin (WKB) approach to calculate the tunneling probability. Afterwards, using Landauer’s tunneling equation, the tunneling generation rate is calculated and approximated to come to a closed-form expression for the current density. Further approximation of the current density by a mathematical function, compact expressions for the resulting B2B tun-neling and TAT current are achieved. The verification of the model is done with the help of TCAD Sentaurus simulation data for various simulation setups. Furthermore, the validity of the model is proven by measurements of fabricated complementary TFETs. In order to demonstrate the numerical stability and continuity as well as the flexibility, simulations of TFET-based logic circuits like a single-stage inverter or an SRAM cell are performed and analyzed. The combination of the DC model with an TFET AC model allows for a transient simulation of an 11-stage ring oscillator

    Compact DC Modeling of Tunnel-FETs

    Get PDF
    En l'última dècada, el transistor d'efecte de camp amb efecte túnel (TFET) ha guanyat molt interès i es maneja com un possible successor de la tecnologia MOSFET convencional. El transport de càrrega en un TFET es basa en el mecanisme de túnel de banda a banda (B2B) i, per tant, el pendent sub-llindar a temperatura ambient pot superar el límit de 60 mV / dec. Per descriure i analitzar el comportament del TFET en les simulacions de circuits, aquesta dissertació introdueix un model compacte de CC per TFET de doble comporta. L'enfocament de modelatge considera l'efecte túnel B2B amb l'efecte parasitari del corrent túnel assistida per trampes (TAT) en l'estat ON i ambipolar del TFET. Inclou un paquet d'equacions compactes per al potencial 2D per descriure el diagrama de banda del TFET. Basat en el diagrama de banda, el B2B i el corrent TAT es deriven per separat. Per fer-ho, primer es troba una expressió compacta per la llargada túnel, que després s'utilitza juntament amb un enfocament numèric robust de tipus Wentzel-Kramers-Brillouin (WKB) per calcular la probabilitat túnel. Després, usant l'equació de túnel de Landauer, la taxa de generació túnel es calcula i s'aproxima per arribar a una expressió de forma tancada per a la densitat de corrent. Amb una aproximació addicional de la densitat de corrent utilitzant una funció matemàtica, s'aconsegueixen expressions compactes per al túnel B2B resultant i el corrent TAT. La verificació del model es realitza amb l'ajuda de les dades de simulació TCAD Sentaurus per diverses configuracions de simulació. A més, la validesa del model es demostra mitjançant mesuraments de TFET complementaris fabricats. Per demostrar l'estabilitat numèrica i la continuïtat, així com la flexibilitat, es realitzen i analitzen simulacions de circuits lògics basats en TFET com un inversor d'una sola etapa o una cel·la SRAM. La combinació del model CC amb un model TFET AC permet una simulació transitòria d'un oscil·lador en anell de 11 etapes.En la última década, el transistor de efecto de campo con efecto túnel (TFET) ha ganado mucho interés y se maneja como un posible sucesor de la tecnología MOSFET convencional. El transporte de carga en un TFET se basa en el mecanismo de túnel de banda a banda (B2B) y, por lo tanto, la pendiente sub-umbral a temperatura ambiente puede superar el límite de 60 mV / dec. Para describir y analizar el comportamiento del TFET en las simulaciones de circuitos, esta disertación introduce un modelo compacto de CC para TFET de doble compuerta. El enfoque de modelado considera el efecto túnel B2B con el efecto parasitario de la corriente túnel asistida por trampas (TAT) en el estado ON y AMBIPOLAR del TFET. Incluye un paquete de ecuaciones compactas del potencial 2D para describir el diagrama de banda del TFET. Basado en el diagrama de banda, el B2B y la corriente TAT se derivan por separado. Para hacerlo, primero se encuentra una expresión compacta para la longitud túnel, que luego se utiliza junto con un enfoque numérico robusto de tipo Wentzel-Kramers-Brillouin (WKB) para calcular la probabilidad túnel. Luego, usando la ecuación de túnel de Landauer, la tasa de generación túnel se calcula y aproxima para llegar a una expresión de forma cerrada para la densidad de corriente. Con una aproximación adicional de la densidad de corriente por una función matemática, se logran expresiones compactas para el túnel B2B resultante y la corriente TAT. La verificación del modelo se realiza con la ayuda de los datos de simulación TCAD Sentaurus para varias configuraciones de simulación. Además, la validez del modelo se demuestra mediante mediciones de TFET complementarios fabricados. Para demostrar la estabilidad numérica y la continuidad, así como la flexibilidad, se realizan y analizan simulaciones de circuitos lógicos basados en TFET como un inversor de una sola etapa o una celda SRAM. La combinación del modelo CC con un modelo TFET AC permite una simulación transitoria de un oscilador en anillo de 11 etapas.In the last decade, the tunnel field-effect transistor (TFET) has gained a lot of interest and is handled as a possible successor of the conventional MOSFET technology. The current transport of a TFET is based on the band-to-band (B2B) tunneling mechanism and therefore, the subthreshold slope at room temperature can overcome the limit of 60 mV/dec. In order to describe and analyze the TFET behavior in circuit simulations, this dissertation introduces a compact DC model for double-gate TFETs. The modeling approach considers the B2B tunneling and the parasitic effect of trap-assisted tunneling (TAT) in the ON- and AMBIPOLAR-state of the TFET. It includes a 2D compact potential equation package to de-scribe the band diagram of the TFET. Based on the band diagram, the B2B tunneling and TAT current part are derived separately. In order to do so, firstly a compact expression for the tunneling length is found, which is then used together with a numerical robust Wentzel-Kramers-Brillouin (WKB) approach to calculate the tunneling probability. Afterwards, using Landauer’s tunneling equation, the tunneling generation rate is calculated and approximated to come to a closed-form expression for the current density. Further approximation of the current density by a mathematical function, compact expressions for the resulting B2B tun-neling and TAT current are achieved. The verification of the model is done with the help of TCAD Sentaurus simulation data for various simulation setups. Furthermore, the validity of the model is proven by measurements of fabricated complementary TFETs. In order to demonstrate the numerical stability and continuity as well as the flexibility, simulations of TFET-based logic circuits like a single-stage inverter or an SRAM cell are performed and analyzed. The combination of the DC model with an TFET AC model allows for a transient simulation of an 11-stage ring oscillator

    Vertical III-V Nanowire Transistors for Low-Power Logic and Reconfigurable Applications

    Get PDF
    With rapid increase in energy consumption of electronics used in our daily life, the building blocks — transistors — need to work in a way that has high energy efficiency and functional density to meet the demand of further scaling. III-V channel combined with vertical nanowire gate-all-around (GAA) device architecture is a promising alternative to conventional Si transistors due to its excellent electrical properties in the channel and electrostatic control across the gate oxide in addition to reduced footprint. Based on this platform, two major objectives of this thesis are included: 1) to improve the performance of III-V p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) and tunnel FETs (TFETs) for low-power digital applications; 2) to integrate HfO2-based ferroelectric gate onto III-V FETs (FeFETs) and TFETs (ferro-TFETs) to enable reconfigurable operation for high functional density.The key bottleneck for all-III-V CMOS is its p-type MOSFETs (p-FETs) which are mainly made of GaSb or InGaSb. Rich surface states of III-Sb materials not only lead to decreased effective channel mobility due to more scattering, but also deteriorate the electrostatics. In this thesis, several approaches to improve p-FET performance have been explored. One strategy is to enhance the hole mobility by introducing compressive strain into III-Sb channel. For the first time, a high and uniform compressive strain near 1% along the transport direction has been achieved in downscaled GaSb nanowires by growing and engineering GaSb-GaAsSb core-shell structure, aiming for potential hole mobility enhancement. In addition, surface passivation using digital etch has been developed to improve the electrostatics with subthreshold swing (SS) down to 107 mV/dec. Moreover, the on-state performance including on-current (Ion) and transconductance (gm) have been enhanced by ∼50% using annealing with H2-based forming gas. Lastly, a novel p-FET structure with (In)GaAsSb channel has been developed and further improved off-state performance with SS = 71 mV/dec, which is the lowest value among all reported III-V p-FETs.Despite subthermionic operation, TFETs usually suffer from low drive current as well as the current operating below 60 mV/dec (I60). The second focus of this thesis is to fine-tune the InAs/(In)GaAsSb heterostructure tunnel junction and the doping in the source segment during epitaxy. As a result, a substantially increased I60 (>1 µA/µm) and Ion up to 40 µA/µm at source-drain bias of 0.5 V have been achieved, reaching a record compared to other reported TFETs.Finally, emerging ferroelectric oxide based on Zr-doped HfO2 (HZO) has been successfully integrated onto III-V vertical nanowire transistors to form FeFETs and ferro-TFETs with GAA architecture. The corresponding electrical performance and reliability have been carefully characterized with both DC and pulsed I-V measurements. The unique band-to-band tunneling in InAs/(In)GaAsSb/GaSb heterostructure TFET creates an ultrashort effective channel, leading to detection of localized potential variation induced by single domains and defects in nanoscale ferroelectric HZO without physical gate-length scaling. By introducing gate/source overlap structure in the ferro-TFET, non-volatile reconfigurable signal modulation with multiple modes including signal transmission, phase shift, frequency doubling, and mixing has been achieved in a single device with low drive voltage and only ∼0.01 µm2 footprint, thus increasing both functional density andenergy efficiency
    corecore