13 research outputs found

    Spectral transmittance model for stacks of transparencies printed with halftone colors

    No full text
    International audienceThe present work investigates the transmission of light through stacks of halftone printed transparencies. We propose a spectral transmittance model describing the multiple reflections of light between the transparencies, whose individual reflectance and transmittance have themselves been obtained by a prediction model. The model for single printed transparency involves the multiple reflections of light between the interfaces as well as the orientation-dependent attenuations of light within the plastic and ink layers. A procedure enables converting the nominal ink surface coverages into effective ones by taking into account the spreading of the inks. Calibration of the model is based on printing a small number of color patches on one transparency and measuring their spectral transmittance. Regarding the stacks of transparencies, an experimental test carried out with inkjet printed samples shows good agreement between predictions and measurements for stacks of two, three and four transparencies. Stochastic halftones are used in order to avoid the apparition of moiré patterns when superposing the halftones. By inversion of the model, we are able to determine the halftone colors to print on each transparency in order to obtain by superposition one targeted color. An original application of this, called "color matching", consists in producing one color of stack from various combinations of colors on the transparencies. The prediction accuracy of the proposed model guarantees the good visual uniformity of the resulting colored area

    Moiré methods for the protection of documents and products: A short survey

    Get PDF
    Moiré effects have long been used for various applications in many different fields, including metrology, strain analysis, optical alignment, etc. In the present survey we describe some of the main applications of the moiré effect in the field of document and product security. We review the main families of moiré-based anticounterfeiting methods, compare them, and explain how they can be used for such security applications

    Spectral reflectance and transmittance prediction model for stacked transparency and paper both printed with halftone colors

    No full text
    International audienceWhen a transparency printed with a first halftone color is deposited on top of a paper printed with a second halftone color, we obtain a third color that we are able to predict in both reflectance and transmittance modes, thanks to a spectral prediction model. The model accounts for the multiple reflections of light between the printed paper and the printed transparency, which are themselves described by specific reflectance and transmittance models, each one being calibrated using a small number of printed colors. The model can account for light scattering by the inks. The measuring geometry and the orientations of light in the transparency are taken into account on the basis of radiometric rules and geometrical optical laws. Experimental testing carried out from several inkjet-printed CMY halftones shows fairly good agreement between predictions and measurements

    Spectral analysis and minimization of moire patterns in color separation

    Get PDF
    Undesired moire patterns may appear in color printing for various reasons. One of the most important reasons is interference between the superposed halftone screens of the different primary colors, due to an improper alignment of their frequencies or orientations. We explain the superposition moire phenomenon using a spectral model that is based of Fourier analysis. After examining the basic case of cosinusoidal grating superpositions we advance, step by step, through the cases of binary gratings, square grids, and dot screens, and discuss the implications on moires between halftone screens in color separation. Then, based on these results, we focus on the moire phenomenon from a different angle , the dynamic point of view: We introduce the noire parameter space and show how changes in the parameters of the superposed layers vary the moire patterns in the superposition. This leads us to an algorithm for moire minimization that provides stable moire-free screen combinations for color separation

    An Ink Spreading Model for Dot-On-Dot Spectral Prediction

    Get PDF
    Due to increasing printing accuracies and the possibility of printing several droplets at the same pixel location, there is a renewed interest in dot-on-dot printing models. In the present contribution, we improve a dot-on-dot spectral prediction model relying on the Yule-Nielsen modified Spectral Neugebauer model by taking into account ink spreading in all ink superposition conditions. Since ink spreading is different when ink dots are printed alone, printed in superposition with one ink or printed in superposition with two inks, we create for each superposition condition an ink spreading function mapping nominal to effective dot surface coverages. When predicting the reflection spectrum of a dot-on-dot halftone patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different ink spreading functions according to the corresponding ratio of colorant surface coverages. We analyze the colorimetric prediction improvement brought by our ink spreading model for dot-on-dot thermal transfer prints and for ink-jet prints. Accounting for ink spreading according to different ink superposition conditions considerably improves the prediction accuracy. In the case of ink jet prints at 120 lpi, the mean DeltaE_94 difference between predictions and measurements is reduced from 4.54 to 1.55 (accuracy improvement factor: 3). Due to the slight misregistration between the ink layers, spectral predictions accounting for ink spreading in the case of dot-on-dot screens are less accurate than corresponding predictions for classical mutually rotated screens

    Band Moire images

    Get PDF
    We propose a new powerful way of synthesizing moire images that enables the creation of dynamically moving messages incorporating text, symbols, and color elements. Moire images appear when superposing a base layer made of replicated base bands and a revealing layer made of a line grating comprising thin transparent lines. Each replicated base band contains the same image, e.g. text or color motifs. Since the base bands and the revealing line grating have similar periods, the revealed moire image is the image located within each base band, enlarged along one dimension. By considering the formation of the moire image as a line sampling process, we derive the linear transformation between the base layer and the moire image. We obtain the geometric layout of the resulting moire image, i.e. its orientation, size and displacement direction when moving the revealing layer on top of the base layer. Interesting moire images can be synthesized by applying geometric transformations to both the base and the revealing layers. We propose a mathematical model describing the geometric transformation that a moire image undergoes, when its base layer and its revealing layer are subject to different freely chosen non-linear geometric transformations. By knowing in advance the layout of a moire image as a function of the layouts of the base layer and of the revealing layer, we are able to create moire components running up and down at different speeds and orientations upon translation of the revealing layer. We also derive layer transformations which yield periodic moire images despite the fact that both the base and the revealing layers are curved. By offering a new means of artistic expression, band moire images can be used to create new designs and to synthesize visually appealing applications. © 2004 ACM

    N-colour separation methods for accurate reproduction of spot colours

    Full text link
    In packaging, spot colours are used to print key information like brand logos and elements for which the colour accuracy is critical. The present study investigates methods to aid the accurate reproduction of these spot colours with the n-colour printing process. Typical n-colour printing systems consist of supplementary inks in addition to the usual CMYK inks. Adding these inks to the traditional CMYK set increases the attainable colour gamut, but the added complexity creates several challenges in generating suitable colour separations for rendering colour images. In this project, the n-colour separation is achieved by the use of additional sectors for intermediate inks. Each sector contains four inks with the achromatic ink (black) common to all sectors. This allows the extension of the principles of the CMYK printing process to these additional sectors. The methods developed in this study can be generalised to any number of inks. The project explores various aspects of the n-colour printing process including the forward characterisation methods, gamut prediction of the n-colour process and the inverse characterisation to calculate the n-colour separation for target spot colours. The scope of the study covers different printing technologies including lithographic offset, flexographic, thermal sublimation and inkjet printing. A new method is proposed to characterise the printing devices. This method, the spot colour overprint (SCOP) model, was evaluated for the n-colour printing process with different printing technologies. In addition, a set of real-world spot colours were converted to n-colour separations and printed with the 7-colour printing process to evaluate against the original spot colours. The results show that the proposed methods can be effectively used to replace the spot coloured inks with the n-colour printing process. This can save significant material, time and costs in the packaging industry

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique
    corecore