72 research outputs found

    Pilot-aided estimation and equalisation of a Radio-over-Fibre system in Wideband Code Division Multiple Access

    Get PDF
    In this study, the impact of a Radio-over-Fibre (RoF) subsystem on the capacity performance of wideband code division multiple access is evaluated. This study investigates the use of pilot-aided channel estimation to compensate for the optical subsystem non-linearities for different channel conditions, estimation intervals and coding schemes. The results show that pilot-aided channel estimation is an effective method for compensating the composite impairments of the optical subsystem and the radio frequency (RF) channel. It is found that there is always a suitable pilot power level which maximises the system capacity performance regardless of coding scheme and channel condition. Also, the peak capacity is only slightly affected by a decrease in the estimation interval

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    Performance issues in hybrid fiber radio communication systems due to nonlinear distortion effects in laser transmitters

    Get PDF
    With the increasing demand for broadband services, it is expected that hybrid fiber radio systems may be employed to provide high capacity access networks for both mobile and fixed users. In these systems, the radio frequency data signals are modulated onto an optical carrier at a mobile switching centre and then sent over fiber to a number of base stations, before being transmitted over air to the users. A possible method of generating the optical radio frequency data signals for distribution over fiber is to directly modulate the electrical signal onto an optical carrier using a laser diode. The major problem with this technique is that nonlinearities in electncal-to-optical conversion may seriously degrade the system performance. In this work we initially examined the distribution of a wideband code division multiple access signal (centered around 6 GHz) through an optically fed microwave system. Our results show that the adjacent channel leakage ratio is degraded from -52 to -32 dBc after passing through the optical system. We then examined the technique of externally injecting light into the directly modulated laser, to extend the bandwidth of the laser diode and hence, increase it’s linear region to beyond the frequency of interest With this technique an improvement of over 10 dB in the adjacent channel leakage ratio of the signal was achieved. We subsequently went on to examine the distribution of a 5-channel radio frequency signal (each channel carrying 10 Mbit/s) through a hybrid fiber system As in the previous work, we examined how external light injection into the directly modulated laser could be used to improve system performance, and our results show an improvement of up to 5 dB. Finally a model was designed using Matlab, which simulated the 5-channel system mentioned above. It used the laser rate equations to mimic the nonlinear effects of the laser diode Good correlation was observed between experimental and simulated results

    Converged wireline and wireless signal distribution in optical fiber access networks

    Get PDF

    Acesso rĂĄdio UMTS, WLAN e WIMAX sobre fibra

    Get PDF
    Mestrado em Engenharia ElectrĂłnica e TelecomunicaçÔesO presente trabalho tem por objectivo o estudo e implementação de uma rede Ăłptica passiva para a transmissĂŁo de sinais rĂĄdio sobre fibra. Para tal, sĂŁo estudados e analisados diversos componentes optoelectrĂłnicos que constituem uma rede Ăłptica passiva, tendo em vista a optimização e desenvolvimento da mesma. Por forma a definir os limites, bem como desenvolver conhecimentos sobre os processos que limitam ondas de rĂĄdio em fibra, foram realizadas simulaçÔes computacionais em redes Ăłptica passivas com transmissĂŁo de sinais 3G-UMTS, objectivando estudar possibilidades de acesso mĂșltiplo, bem como os efeitos da alteração de determinadas propriedades dos dispositivos Ăłpticos. Para demonstrar os processos limitativos da propagação, laboratorialmente foram implementadas duas topologias de redes Ăłpticas passivas recorrendo a amplificadores Ăłpticos e lasers de baixo custo, para estudar a transmissĂŁo de multi-formatos de sinais rĂĄdio sobre fibra. A primeira consiste na transmissĂŁo de um canal que consiste na modulação directa de um laser com o sinal rĂĄdio que pode ser 3G-UMTS, WLAN ou WiMAX. A segunda inclui, para alĂ©m do cenĂĄrio apresentado, um canal extra modulado em amplitude num cenĂĄrio de multiplexagem no comprimento de onda. ABSTRACT: The present work intends to study and implement a passive optical network for the transmission of radio signals over optical fiber. For this intent, several optoelectronic devices used in passive optical networks were studied and analyzed in order to optimize the developed network. A passive optical network for the transmission of 3G-UMTS signals was simulated and the effect of multiple access and other optical factors were studied and analyzed. In the laboratory were implemented two different topologies for passive optical networks using low cost optical amplifiers and lasers in multi-format multiwavelength radio over fiber signals. The first consider the transmission of a single channel consisting of directly modulating the laser with a radio signal that can be UMTS, WLAN or WiMAX, and the second includes an extra channel with amplitude modulated signals in a wavelength division multiplexing scenario

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure

    Performance of low-cost radio-over-fibre systems

    Get PDF
    The research presented in this thesis has focused on the use of radio-over-fibre (RoF) technology for improving the quality of mobile/wireless coverage within buildings. The primary aim was to minimise overall system costs by employing commercially available components. For this purpose, a distributed antenna system using low-cost vertical-cavity surface-emitting lasers (VCSELs) operating at 850 nm and multimode fibre (OM1/OM2) has been designed and implemented. A detailed link budget analysis has been performed which allows for the prediction of maximum achievable ranges for the transmission of different wireless systems over the RoF link, while taking into account practical restrictions that are important for bidirectional link operation (e.g. crosstalk and noise emissions). The analysis indicates that when optimised component parameter values are utilised, reasonable cell sizes may be achieved for systems such as GSM, UMTS and WLAN. The link budget predictions were verified for the transmission of ‘real’ WLAN signals over the designed RoF link and complete coverage of a standard office room was demonstrated. The majority of previous research into low-cost RoF links has primarily involved characterisation of the optical path. In this investigation, signal strength and throughput measurements were conducted for the combined optical and wireless paths in order to verify the operation of the complete fibre-fed WLAN system. Throughput values close to 5 Mbps for IEEE 802.11b and 20 Mbps for IEEE 802.1 lg were recorded. Additionally, the transmission of different combinations of emulated mobile/wireless systems in a dual-band configuration over another radio-over-fibre link (also employing 850 nm VCSELs and MMF) has been successfully demonstrated. Experimental investigations have been carried out for the first time to analyse the performance of WLAN-over-fibre networks using different MAC mechanisms such as fragmentation and the use of RTS/CTS in the presence of hidden nodes. Finally, scenarios involving multiple clients accessing a single remote antenna unit and multiple remote antenna units being fed by a single access point have been demonstrated

    Adaptive optical feedforward linearization of optical transceiver for radio over fiber communication link

    Get PDF
    With the tremendous growth in numbers of mobile data subscribers and explosive demand for mobile data, the current wireless access network need to be augmented in order to keep up with the data speed promised by the future generation mobile network standards. Radio over fiber technology (RoF) is a cost effective solution because of its ability to support numerous numbers of simple structured base stations by consolidating the signal processing functions at the central station. RoF systems are analog systems where noise figure and spurious free dynamic range (SFDR) are important parameters in an RoF link. The nonlinearity of a laser transmitter is a major limiting factor to the performance of an RoF link, as it generates spurious spectral components, leading to intermodulation distortions (IMD), which limit the achievable SFDR of the analog RF wave transmissions. The device nonlinearity can be mitigated through various linearization schemes. The feedforward linearization technique offers a number of advantages compared to other techniques, as it offers good suppression of distortion products over a large bandwidth and supports high operating frequencies. On the other hand, feedforward linearization is a relatively sensitive scheme, where its performance is highly influenced by changing operating conditions such as laser aging, temperature effect, and input signal variations. Therefore, for practical implementations the feedforward system has to be real-time adaptive. This thesis aims to develop an adaptive optical feedforward linearization system for radio over fiber links. Mathematical analyses and computer simulations are performed to determine the most efficient algorithm for the adaptive controller for laser transmitter feedforward linearization system. Experimental setup and practical measurement are performed for an adaptive feedforward linearized laser transmitter and its performance is optimized. The adaptive optical feedforward linearization system has been modeled and simulated in MATLAB Simulink. The performances of two adaptive algorithms, which are related to the gradient signal method, such as least mean square (LMS) and recursive least square (RLS) have been compared. The LMS algorithm has been selected because of its robustness and simplicity. Finally, the adaptive optical feedforward linearization system has been set up with digital signal processor (DSP) as the control device, and practical measurement has been performed. The system has achieved a suppression of 14 dB in the third order IMD products over a bandwidth of 30 MHz, in a two-tone measurement at 1.7 GHz
    • 

    corecore