34,930 research outputs found

    Improving single-cell cloning workflow for gene editing in human pluripotent stem cells

    Get PDF
    The availability of human pluripotent stem cells (hPSCs) and progress in genome engineering technology have altered the way we approach scientific research and drug development screens. Unfortunately, the procedures for genome editing of hPSCs often subject cells to harsh conditions that compromise viability: a major problem that is compounded by the innate challenge of single-cell culture. Here we describe a generally applicable workflow that supports single-cell cloning and expansion of hPSCs after genome editing and single-cell sorting. Stem-Flex and RevitaCell supplement, in combination with Geltrex or Vitronectin (VN), promote reliable single-cell growth in a feeder-free and defined environment. Characterization of final genome-edited clones reveals that pluripotency and normal karyotype are retained following this single-cell culture protocol. This time-efficient and simplified culture method paves the way for high-throughput hPSC culture and will be valuable for both basic research and clinical applications. Keywords: Human pluripotent stem cells, Embryonic stem cells, Single-cell cloning, Induced pluripotent stem cells, hPSCs, hESCs, Genome engineering, CRISPR-Cas

    Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival

    Get PDF
    There are two types of neural stem cells (NSCs). Primitive NSCs [leukemia inhibitory factor (LIF) dependent but exogenous fibroblast growth factor (FGF) 2 independent] can be derived from mouse embryonic stem (ES) cells in vitro and from embryonic day 5.5 (E5.5) to E7.5 epiblast and E7.5-E8.5 neuroectoderm in vivo. Definitive NSCs (LIF independent but FGF2 dependent) first appear in the E8.5 neural plate and persist throughout life. Primitive NSCs give rise to definitive NSCs. Loss and gain of functions were used to study the role of vascular endothelial growth factor (VEGF)-A and its receptor, Flk1, in NSCs. The numbers of Flk1 knock-out mice embryo-derived and ES cell-derived primitive NSCs were increased because of the enhanced survival of primitive NSCs. In contrast, neural precursor-specific, Flk1 conditional knock-out mice-derived, definitive NSCs numbers were decreased because of the enhanced cell death of definitive NSCs. These effects were not observed in cells lacking Flt1, another VEGF receptor. In addition, the cell death stimulated by VEGF-A of primitive NSC and the cell survival stimulated by VEGF-A of definitive NSC were blocked by Flk1/Fc-soluble receptors and VEGF-A function-blocking antibodies. These VEGF-A phenotypes also were blocked by inhibition of the downstream effector nuclear factor kappa B (NF-kappa B). Thus, both the cell death of primitive NSC and the cell survival of definitive NSC induced by VEGF-A stimulation are mediated by bifunctional NF-kappa B effects. In conclusion, VEGF-A function through Flk1 mediates survival (and not proliferative or fate change) effects on NSCs, specifically

    Stem Cell Transplantation As A Dynamical System: Are Clinical Outcomes Deterministic?

    Get PDF
    Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed.Comment: 23 pages, 4 figures. Updated version with additional data, 2 new figures and editorial revisions. New authors adde

    Seeding hESCs to achieve optimal colony clonality

    Get PDF
    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have promising clinical applications which often rely on clonally-homogeneous cell populations. To achieve this, it is important to ensure that each colony originates from a single founding cell and to avoid subsequent merging of colonies during their growth. Clonal homogeneity can be obtained with low seeding densities; however, this leads to low yield and viability. It is therefore important to quantitatively assess how seeding density affects clonality loss so that experimental protocols can be optimised to meet the required standards. Here we develop a quantitative framework for modelling the growth of hESC colonies from a given seeding density based on stochastic exponential growth. This allows us to identify the timescales for colony merges and over which colony size no longer predicts the number of founding cells. We demonstrate the success of our model by applying it to our own experiments of hESC colony growth; while this is based on a particular experimental set-up, the model can be applied more generally to other cell lines and experimental conditions to predict these important timescales
    corecore