1,388 research outputs found

    Analysis of Static Cellular Cooperation between Mutually Nearest Neighboring Nodes

    Get PDF
    Cooperation in cellular networks is a promising scheme to improve system performance. Existing works consider that a user dynamically chooses the stations that cooperate for his/her service, but such assumption often has practical limitations. Instead, cooperation groups can be predefined and static, with nodes linked by fixed infrastructure. To analyze such a potential network, we propose a grouping method based on node proximity. With the Mutually Nearest Neighbour Relation, we allow the formation of singles and pairs of nodes. Given an initial topology for the stations, two new point processes are defined, one for the singles and one for the pairs. We derive structural characteristics for these processes and analyse the resulting interference fields. When the node positions follow a Poisson Point Process (PPP) the processes of singles and pairs are not Poisson. However, the performance of the original model can be approximated by the superposition of two PPPs. This allows the derivation of exact expressions for the coverage probability. Numerical evaluation shows coverage gains from different signal cooperation that can reach up to 15% compared to the standard noncooperative coverage. The analysis is general and can be applied to any type of cooperation in pairs of transmitting nodes.Comment: 17 pages, double column, Appendices A-D, 9 Figures, 18 total subfigures. arXiv admin note: text overlap with arXiv:1604.0464

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Distributed synchronization algorithms for wireless sensor networks

    Get PDF
    The ability to distribute time and frequency among a large population of interacting agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization allows the implementation of distributed signal processing and coding techniques, and the realization of coordinated access to the shared wireless medium. Large multi-hop WSN\u27s constitute a new regime for network synchronization, as they call for the development of scalable, fully distributed synchronization algorithms. While most of previous research focused on synchronization at the application layer, this thesis considers synchronization at the lowest layers of the communication protocol stack of a WSN, namely the physical and the medium access control (MAC) layer. At the physical layer, the focus is on the compensation of carrier frequency offsets (CFO), while time synchronization is studied for application at the MAC layer. In both cases, the problem of realizing network-wide synchronization is approached by employing distributed clock control algorithms based on the classical concept of coupled phase and frequency locked loops (PLL and FLL). The analysis takes into account communication, signaling and energy consumption constraints arising in the novel context of multi-hop WSN\u27s. In particular, the robustness of the algorithms is checked against packet collision events, infrequent sync updates, and errors introduced by different noise sources, such as transmission delays and clock frequency instabilities. By observing that WSN\u27s allow for greater flexibility in the design of the synchronization network architecture, this work examines also the relative merits of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) architectures. With both MC and MS architectures, synchronization accuracy degrades smoothly with the network size, provided that loop parameters are conveniently chosen. In particular, MS topologies guarantee faster synchronization, but they are hindered by higher noise accumulation, while MC topologies allow for an almost uniform error distribution at the price of much slower convergence. For all the considered cases, synchronization algorithms based on adaptive PLL and FLL designs are shown to provide robust and scalable network-wide time and frequency distribution in a WSN

    Traffic-Driven Energy Efficient Operational Mechanisms in Cellular Access Networks

    Get PDF
    Recent explosive growth in mobile data traffic is increasing energy consumption in cellular networks at an incredible rate. Moreover, as a direct result of the conventional static network provisioning approach, a significant amount of electrical energy is being wasted in the existing networks. Therefore, in recent time, the issue of designing energy efficient cellular networks has drawn significant attention, which is also the foremost motivation behind this research. The proposed research is particularly focused on the design of self-organizing type traffic-sensitive dynamic network reconfiguring mechanisms for energy efficiency in cellular systems. Under the proposed techniques, radio access networks (RANs) are adaptively reconfigured using less equipment leading to reduced energy utilization. Several energy efficient cellular network frameworks by employing inter-base station (BS) cooperation in RANs are proposed. Under these frameworks, based on the instantaneous traffic demand, BSs are dynamically switched between active and sleep modes by redistributing traffic among them and thus, energy savings is achieved. The focus is then extended to exploiting the availability of multiple cellular networks for extracting energy savings through inter-RAN cooperation. Mathematical models for both of these single-RAN and multi-RAN cooperation mechanisms are also formulated. An alternative energy saving technique using dynamic sectorization (DS) under which some of the sectors in the underutilized BSs are turned into sleep mode is also proposed. Algorithms for both the distributed and the centralized implementations are developed. Finally, a two-dimensional energy efficient network provisioning mechanism is proposed by jointly applying both the DS and the dynamic BS switching. Extensive simulations are carried out, which demonstrate the capability of the proposed mechanisms in substantially enhancing the energy efficiency of cellular networks

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore