406 research outputs found

    An inverse Sturm-Liouville problem with a fractional derivative

    Full text link
    In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order α∈(1,2)\alpha\in(1,2) of fractional derivative is sufficiently away from 2.Comment: 16 pages, 6 figures, accepted for publication in Journal of Computational Physic

    A Finite Element Method for the Fractional Sturm-Liouville Problem

    Full text link
    In this work, we propose an efficient finite element method for solving fractional Sturm-Liouville problems involving either the Caputo or Riemann-Liouville derivative of order α∈(1,2)\alpha\in(1,2) on the unit interval (0,1)(0,1). It is based on novel variational formulations of the eigenvalue problem. Error estimates are provided for the finite element approximations of the eigenvalues. Numerical results are presented to illustrate the efficiency and accuracy of the method. The results indicate that the method can achieve a second-order convergence for both fractional derivatives, and can provide accurate approximations to multiple eigenvalues simultaneously.Comment: 30 pages, 7 figure

    A matrix method for fractional Sturm-Liouville problems on bounded domain

    Get PDF
    A matrix method for the solution of direct fractional Sturm-Liouville problems on bounded domain is proposed where the fractional derivative is defined in the Riesz sense. The scheme is based on the application of the Galerkin spectral method of orthogonal polynomials. The order of convergence of the eigenvalue approximations with respect to the matrix size is studied. Some numerical examples that confirm the theory and prove the competitiveness of the approach are finally presented

    Inverse Nodal Problem for a Conformable Fractional Diffusion Operator

    Full text link
    In this paper, a diffusion operator including conformable fractional derivatives of order {\alpha} ({\alpha} in (0,1)) is considered. The asymptotics of the eigenvalues, eigenfunctions and nodal points of the operator are obtained. Furthermore, an effective procedure for solving the inverse nodal problem is given

    Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain

    Get PDF
    In this article, we first introduce a singular fractional Sturm-Liouville problem (SFSLP) on unbounded domain. The associated fractional differential operator is both Weyl and Caputo type. The properties of spectral data for fractional operator on unbounded domain have been investigated. Moreover, it has been shown that the eigenvalues of the singular problem are real-valued and the corresponding eigenfunctions are orthogonal. The analytical eigensolutions of SFSLP are obtained and defined as generalized Laguerre fractional-polynomials. The optimal approximation of such generalized Laguerre fractional-polynomials in suitably weighted Sobolev spaces involving fractional derivatives has been derived. We construct an efficient generalized Laguerre fractional-polynomials-Petrov–Galerkin methods for a class of fractional initial value problems and fractional boundary value problems. As a numerical example, we examine space fractional advection–diffusion equation. Our theoretical results are confirmed by associated numerical results
    • …
    corecore