9,628 research outputs found

    VCSEL-based, CWDM - PON systems using reflective technology for bi-directional multi-play service provision

    Get PDF
    Orthogonal frequency division multiplexing based on radio-overfiber schemes allows the direct use of multiple, native format wireless platforms. In combination with standard baseband provision such as Gigabit Ethernet, this provides access to a wide range of services without requiring specialized end-user equipment. However, such signals have a high laser power-bandwidth requirement which may not be a good fit to the domestic environment. Here we explore the use of low-power optical components in customer premises which interface with an intermediate optical network node. Two solutions in the context of SSMF over a CWDM optical network are described, based on either reflective or direct modulation. EVMs of better than 35 dB were achieved. ©2012 Optical Society of America

    An Empirical Air-to-Ground Channel Model Based on Passive Measurements in LTE

    Get PDF
    In this paper, a recently conducted measurement campaign for unmanned-aerial-vehicle (UAV) channels is introduced. The downlink signals of an in-service long-time-evolution (LTE) network which is deployed in a suburban scenario were acquired. Five horizontal and five vertical flight routes were considered. The channel impulse responses (CIRs) are extracted from the received data by exploiting the cell specific signals (CRSs). Based on the CIRs, the parameters of multipath components (MPCs) are estimated by using a high-resolution algorithm derived according to the space-alternating generalized expectation-maximization (SAGE) principle. Based on the SAGE results, channel characteristics including the path loss, shadow fading, fast fading, delay spread and Doppler frequency spread are thoroughly investigated for different heights and horizontal distances, which constitute a stochastic model.Comment: 15 pages, submitted version to IEEE Transactions on Vehicular Technology. Current status: Early acces

    Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks

    Full text link
    The millimeter wave (mmWave) bands offer the possibility of orders of magnitude greater throughput for fifth generation (5G) cellular systems. However, since mmWave signals are highly susceptible to blockage, channel quality on any one mmWave link can be extremely intermittent. This paper implements a novel dual connectivity protocol that enables mobile user equipment (UE) devices to maintain physical layer connections to 4G and 5G cells simultaneously. A novel uplink control signaling system combined with a local coordinator enables rapid path switching in the event of failures on any one link. This paper provides the first comprehensive end-to-end evaluation of handover mechanisms in mmWave cellular systems. The simulation framework includes detailed measurement-based channel models to realistically capture spatial dynamics of blocking events, as well as the full details of MAC, RLC and transport protocols. Compared to conventional handover mechanisms, the study reveals significant benefits of the proposed method under several metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Network
    corecore