18,418 research outputs found

    Tunable viscosity modification with diluted particles: When particles decrease the viscosity of complex fluids

    Full text link
    While spherical particles are the most studied viscosity modifiers, they are well known only to increase viscosities, in particular at low concentrations. Extended studies and theories on non-spherical particles find a more complicated behavior, but still a steady increase. Involving platelets in combination with complex fluids displays an even more complex scenario that we analyze experimentally and theoretically as a function of platelet diameter, to find the underlying concepts. Using a broad toolbox of different techniques we were able to decrease the viscosity of crude oils although solid particles were added. This apparent contradiction could lead to a wider range of applications.Comment: 13+7 pages, 6+7 figure

    Effect of moisture on mechanical behavior of granular material in initial laboratory and mechanical tests

    Get PDF
    In this article authors present results of initial laboratory tests and further numerical analyses using finite element method (FEM) and back - calculation method. Laboratory tests are based on trial loadings of granular material in different moisture conditions. Numerical analyses were obtained in FEM software using Coulomb - Mohr model of tested material. Presented results are the part of wider research program in which the main aim is to evaluate the influence of variable moisture content of granular materials used in road pavement structures on their fatigue life and in Life Cycle Assessment (LCA)

    Calibration of a visual method for the analysis of the mechanical properties of historic masonry

    Get PDF
    The conservation and preservation of historic buildings affords many challenges to those who aim to retain our building heritage. In this area, the knowledge of the mechanical characteristics of the masonry material is fundamental. However, mechanical destructive testing is always expensive and time-consuming, especially when applied to masonry historic structures. In order to overcome such kind of problems, the authors of this article, proposed in 2014 a visual method for the estimation of some critical mechanical parameters of the masonry material. Based on the fact that the mechanical behavior of masonry material depends on many factors, such as compressive or shear strength of components (mortar and masonry units), unit shape, volumetric ratio between components and stone arrangement, that is the result of applying a series of construction solutions which form the "rule of art". Taking into account the complexity of the problem due to the great number of variables, and being on-site testing a not-always viable solution, a visual estimate of the mechanical parameters of the walls can be made on the basis of a qualitative criteria evaluation. A revision of this visual method is proposed in this paper. The draft version of new Italian Building Code have been used to re-calibrate this visual method and more tests results have been also considered for a better estimation of the mechanical properties of masonry

    Magma Rheology

    Get PDF

    Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    Get PDF
    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a onedimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium content
    corecore