36 research outputs found

    Union bound for quantum information processing

    Get PDF
    In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi-Nagaoka inequality [IEEE Trans. Inf. Theory, 49(7):1753 (2003)], used often in quantum information theory when analyzing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, the Pythagorean theorem, and the Cauchy--Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms, and quantum complexity theory.Comment: v2: 23 pages, includes proof, based on arXiv:1208.1400 and arXiv:1510.04682, for a lower bound on the second-order asymptotics of hypothesis testing for i.i.d. quantum states acting on a separable Hilbert spac

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Results include a third-order-optimal characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order- optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access-discrete multiple source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third- order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders

    Guessing with a Bit of Help

    Full text link
    What is the value of a single bit to a guesser? We study this problem in a setup where Alice wishes to guess an i.i.d. random vector, and can procure one bit of information from Bob, who observes this vector through a memoryless channel. We are interested in the guessing efficiency, which we define as the best possible multiplicative reduction in Alice's guessing-moments obtainable by observing Bob's bit. For the case of a uniform binary vector observed through a binary symmetric channel, we provide two lower bounds on the guessing efficiency by analyzing the performance of the Dictator and Majority functions, and two upper bounds via maximum entropy and Fourier-analytic / hypercontractivity arguments. We then extend our maximum entropy argument to give a lower bound on the guessing efficiency for a general channel with a binary uniform input, via the strong data-processing inequality constant of the reverse channel. We compute this bound for the binary erasure channel, and conjecture that Greedy Dictator functions achieve the guessing efficiency

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Via a connection to composite hypothesis testing, a new converse that tightens previously known converses for Slepian-Wolf source coding is established. Asymptotic results include a third-order characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order-optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third-order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders.Comment: 42 pages, 10 figures. Part of this work was presented at ISIT'1
    corecore