2,762 research outputs found

    Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data

    Get PDF
    Biomarkers which predict patient’s survival can play an important role in medical diagnosis and treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers ofsurvival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce dimensionality of data, but captures the missing features of DWT, and is complementary part of DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, using Bayes classifier to build its fitness function. The corresponding protein markers were located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 2 were used to evaluate the performance of selected biomarkers. Experiments were conducted on colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker CD46 was found to significantly associate with survival time

    Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas

    MAGNETO: cell type marker panel generator from single-cell transcriptomic data

    Get PDF
    Single-cell RNA sequencing experiments produce data useful to identify different cell types, including uncharacterized and rare ones. This enables us to study the specific functional roles of these cells in different microenvironments and contexts. After identifying a (novel) cell type of interest, it is essential to build succinct marker panels, composed of a few genes referring to cell surface proteins and clusters of differentiation molecules, able to discriminate the desired cells from the other cell populations. In this work, we propose a fully-automatic framework called MAGNETO, which can help construct optimal marker panels starting from a single-cell gene expression matrix and a cell type identity for each cell. MAGNETO builds effective marker panels solving a tailored bi-objective optimization problem, where the first objective regards the identification of the genes able to isolate a specific cell type, while the second conflicting objective concerns the minimization of the total number of genes included in the panel. Our results on three public datasets show that MAGNETO can identify marker panels that identify the cell populations of interest better than state-of-the-art approaches. Finally, by fine-tuning MAGNETO, our results demonstrate that it is possible to obtain marker panels with different specificity levels

    Multimodal Data Fusion and Quantitative Analysis for Medical Applications

    Get PDF
    Medical big data is not only enormous in its size, but also heterogeneous and complex in its data structure, which makes conventional systems or algorithms difficult to process. These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography (PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written doctor notes). Multimodal data fusion is an emerging vital field to address this urgent challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal data. The fusion algorithms bring great potential in medical data analysis, by 1) taking advantage of complementary information from different sources (such as functional-structural complementarity of PET/CT images) and 2) exploiting consensus information that reflects the intrinsic essence (such as the genetic essence underlying medical imaging and clinical symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical applications, including personalized patient care, more optimal medical operation plan, and preventive public health. Though there has been extensive research on computational approaches for multimodal fusion, there are three major challenges of multimodal data fusion in quantitative medical applications, which are summarized as feature-level fusion, information-level fusion and knowledge-level fusion: • Feature-level fusion. The first challenge is to mine multimodal biomarkers from high-dimensional small-sample multimodal medical datasets, which hinders the effective discovery of informative multimodal biomarkers. Specifically, efficient dimension reduction algorithms are required to alleviate "curse of dimensionality" problem and address the criteria for discovering interpretable, relevant, non-redundant and generalizable multimodal biomarkers. • Information-level fusion. The second challenge is to exploit and interpret inter-modal and intra-modal information for precise clinical decisions. Although radiomics and multi-branch deep learning have been used for implicit information fusion guided with supervision of the labels, there is a lack of methods to explicitly explore inter-modal relationships in medical applications. Unsupervised multimodal learning is able to mine inter-modal relationship as well as reduce the usage of labor-intensive data and explore potential undiscovered biomarkers; however, mining discriminative information without label supervision is an upcoming challenge. Furthermore, the interpretation of complex non-linear cross-modal associations, especially in deep multimodal learning, is another critical challenge in information-level fusion, which hinders the exploration of multimodal interaction in disease mechanism. • Knowledge-level fusion. The third challenge is quantitative knowledge distillation from multi-focus regions on medical imaging. Although characterizing imaging features from single lesions using either feature engineering or deep learning methods have been investigated in recent years, both methods neglect the importance of inter-region spatial relationships. Thus, a topological profiling tool for multi-focus regions is in high demand, which is yet missing in current feature engineering and deep learning methods. Furthermore, incorporating domain knowledge with distilled knowledge from multi-focus regions is another challenge in knowledge-level fusion. To address the three challenges in multimodal data fusion, this thesis provides a multi-level fusion framework for multimodal biomarker mining, multimodal deep learning, and knowledge distillation from multi-focus regions. Specifically, our major contributions in this thesis include: • To address the challenges in feature-level fusion, we propose an Integrative Multimodal Biomarker Mining framework to select interpretable, relevant, non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample imaging and non-imaging data for diagnostic and prognostic applications. The feature selection criteria including representativeness, robustness, discriminability, and non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential forward selection, and correlation analysis, respectively. SHapley Additive exPlanations (SHAP) method and nomogram are employed to further enhance feature interpretability in machine learning models. • To address the challenges in information-level fusion, we propose an Interpretable Deep Correlational Fusion framework, based on canonical correlation analysis (CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data, and 2) interpretation of complex non-linear cross-modal associations. Specifically, two novel loss functions are proposed to optimize the discovery of informative multimodal representations in both supervised and unsupervised deep learning, by jointly learning inter-modal consensus and intra-modal discriminative information. An interpretation module is proposed to decipher the complex non-linear cross-modal association by leveraging interpretation methods in both deep learning and multimodal consensus learning. • To address the challenges in knowledge-level fusion, we proposed a Dynamic Topological Analysis framework, based on persistent homology, for knowledge distillation from inter-connected multi-focus regions in medical imaging and incorporation of domain knowledge. Different from conventional feature engineering and deep learning, our DTA framework is able to explicitly quantify inter-region topological relationships, including global-level geometric structure and community-level clusters. K-simplex Community Graph is proposed to construct the dynamic community graph for representing community-level multi-scale graph structure. The constructed dynamic graph is subsequently tracked with a novel Decomposed Persistence algorithm. Domain knowledge is incorporated into the Adaptive Community Profile, summarizing the tracked multi-scale community topology with additional customizable clinically important factors

    Gene selection for cancer classification with the help of bees

    Full text link

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed
    • …
    corecore