331 research outputs found

    Cascades and transitions in turbulent flows

    Full text link
    Turbulence is characterized by the non-linear cascades of energy and other inviscid invariants across a huge range of scales, from where they are injected to where they are dissipated. Recently, new experimental, numerical and theoretical works have revealed that many turbulent configurations deviate from the ideal 3D/2D isotropic cases characterized by the presence of a strictly direct/inverse energy cascade, respectively. We review recent works from a unified point of view and we present a classification of all known transfer mechanisms. Beside the classical cases of direct and inverse cascades, the different scenarios include: split cascades to small and large scales simultaneously, multiple/dual cascades of different quantities, bi-directional cascades where direct and inverse transfers of the same invariant coexist in the same scale-range and finally equilibrium states where no cascades are present, including the case when a condensate is formed. We classify all transitions as the control parameters are changed and we analyse when and why different configurations are observed. Our discussion is based on a set of paradigmatic applications: helical turbulence, rotating and/or stratified flows, MHD and passive/active scalars where the transfer properties are altered as one changes the embedding dimensions, the thickness of the domain or other relevant control parameters, as the Reynolds, Rossby, Froude, Peclet, or Alfven numbers. We discuss the presence of anomalous scaling laws in connection with the intermittent nature of the energy dissipation in configuration space. An overview is also provided concerning cascades in other applications such as bounded flows, quantum, relativistic and compressible turbulence, and active matter, together with implications for turbulent modelling. Finally, we present a series of open problems and challenges that future work needs to address.Comment: accepted for publication on Physics Reports 201

    Low Complexity, Time Accurate, Model Accurate Algorithms in Computational Fluid Dynamics

    Get PDF
    Computational fluid dynamics is an essential research area that is of crucial importance in comprehending of fluid flows in mechanical and hydrodynamic processes. Accurate, efficient and reliable simulation of flows occupies a central place in the development of computational science. In this work, we explore various numerical methods and utilize them to improve flow predication. Four research projects are conducted and show evidence in enhancement of accuracy, efficiency and reliability of prediction of fluid motion. We first propose a low computationally complex, stable and adaptive method for time accurate approximation of the evolutionary stokes Darcy system and Navier-Stokes equations. The improved method post-processes the solutions of the Backward Euler scheme by adding no more than three lines to an existing program. Time accuracy is increased from first to second order and the overdamping of the Backward Euler method is removed. The second project is to develop an efficient method to describe magnetohydrodynamic flows at low magnetic Reynolds numbers. The decoupled method is based on the artificial compression and partitioned schemes. Computational efficiency is greatly improved because we only need to solve linear problems at each time step with systems decouple by physical processes. Last but not least, we introduce a way to correct the Baldwin-Lomax model for non-equilibrium turbulence, which is often considered impossible to simulate due to backscatter. The corrected Baldwin-Lomax model not only shows that effects of fluctuations on means are dissipative on time average but also can have bursts for which energy flow reverses. For each project, we present comprehensive error and stability analysis and provide different numerical experiments to further support theoretical theories

    A Penalty-projection based Efficient and Accurate Stochastic Collocation Method for Magnetohydrodynamic Flows

    Full text link
    We propose, analyze, and test a penalty projection-based efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Els\"asser variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with ensemble eddy-viscosity and grad-div stabilization terms. The stability of the algorithm is proven rigorously. We prove that the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm's performance on benchmark channel flow over a rectangular step, and a regularized lid-driven cavity problem with high random Reynolds number and magnetic Reynolds number.Comment: 28 pages, 13 figure

    Efficient Numerical Methods for Magnetohydrodynamic Flow

    Get PDF
    This dissertation studies efficient numerical methods for approximating solu-tions to viscous, incompressible, time-dependent magnetohydrodynamic (MHD) flows and computing MHD flows ensembles. Chapter 3 presents and analyzes a fully discrete, decoupled efficient algorithm for MHD flow that is based on the Els¨asser variable formulation, proves its uncondi-tional stability with respect to the timestep size, and proves its unconditional con-vergence. Numerical experiments are given which verify all predicted convergence rates of our analysis, show the results of the scheme on a set of channel flow problems match well the results found when the computation is done with MHD in primitive variables, and finally illustrate that the scheme performs well for channel flow over a step. In chapter 4, we propose, analyze, and test a new MHD discretization which decouples the system into two Oseen problems at each timestep, yet maintains un-conditional stability with respect to timestep size. The scheme is optimally accu-rate in space, and behaves like second order in time in practice. The proposed method chooses θ ∈ [0, 1], dependent on the viscosity ν and magnetic diffusiv-ity νm, so that unconditionally stability is achieved, and gives temporal accuracy O(∆t2 + (1 − θ)|ν − νm|∆t). In practice, ν and νm are small, and so the method be-haves like second order. We show the θ-method provides excellent accuracy in cases where usual BDF2 is unstable. Chapter 5 proposes an efficient algorithm and studies for computing flow en-sembles of incompressible MHD flows under uncertainties in initial or boundary data. The ensemble average of J realizations is approximated through an efficient algo-rithm that, at each time step, uses the same coefficient matrix for each of the J system solves. Hence, preconditioners need to be built only once per time step, and the algorithm can take advantage of block linear solvers. Additionally, an Els¨asser variable formulation is used, which allows for a stable decoupling of each MHD system at each time step. We prove stability and convergence of the algorithm, and test it with two numerical experiments. This work concludes with chapter 6, which proposes, analyzes and tests high order algebraic splitting methods for MHD flows. The key idea is to applying Yosida-type algebraic splitting to the incremental part of the unknowns at each time step. This reduces the block Schur complement by decoupling it into two Navier-Stokes-type Schur complements, each of which is symmetric positive definite and the same at each time step. We prove the splitting is third order in ∆t, and if used together with (block-)pressure correction, is fourth order. A full analysis of the solver is given, both as a linear algebraic approximation, and as a finite element discretization of an approximation to the un-split discrete system. Numerical tests are given to illustrate the theory and show the effectiveness of the method. Finally, conclusions and future works are discussed in the final chapter

    Towards a new generation of multi-dimensional stellar evolution models: development of an implicit hydrodynamic code

    Get PDF
    This paper describes the first steps of development of a new multidimensional time implicit code devoted to the study of hydrodynamical processes in stellar interiors. The code solves the hydrodynamical equations in spherical geometry and is based on the finite volume method. Radiation transport is taken into account within the diffusion approximation. Realistic equation of state and opacities are implemented, allowing the study of a wide range of problems characteristic of stellar interiors. We describe in details the numerical method and various standard tests performed to validate the method. We present preliminary results devoted to the description of stellar convection. We first perform a local simulation of convection in the surface layers of a A-type star model. This simulation is used to test the ability of the code to address stellar conditions and to validate our results, since they can be compared to similar previous simulations based on explicit codes. We then present a global simulation of turbulent convective motions in a cold giant envelope, covering 80% in radius of the stellar structure. Although our implicit scheme is unconditionally stable, we show that in practice there is a limitation on the time step which prevent the flow to move over several cells during a time step. Nevertheless, in the cold giant model we reach a hydro CFL number of 100. We also show that we are able to address flows with a wide range of Mach numbers (10^-3 < Ms< 0.5), which is impossible with an anelastic approach. Our first developments are meant to demonstrate that the use of an implicit scheme applied to a stellar evolution context is perfectly thinkable and to provide useful guidelines to optimise the development of an implicit multi-D hydrodynamical code.Comment: 21 pages, 18 figures, accepted for publication in A&
    corecore