399 research outputs found

    Physical Layer Defenses Against Primary User Emulation Attacks

    Get PDF
    Cognitive Radio (CR) is a promising technology that works by detecting unused parts of the spectrum and automatically reconfiguring the communication system\u27s parameters in order to operate in the available communication channels while minimizing interference. CR enables efficient use of the Radio Frequency (RF) spectrum by generating waveforms that can coexist with existing users in licensed spectrum bands. Spectrum sensing is one of the most important components of CR systems because it provides awareness of its operating environment, as well as detecting the presence of primary (licensed) users of the spectrum

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum

    Extending Critical Infrastructure Element Longevity using Constellation-based ID Verification

    Get PDF
    This work supports a technical cradle-to-grave protection strategy aimed at extending the useful lifespan of Critical Infrastructure (CI) elements. This is done by improving mid-life operational protection measures through integration of reliable physical (PHY) layer security mechanisms. The goal is to improve existing protection that is heavily reliant on higher-layer mechanisms that are commonly targeted by cyberattack. Relative to prior device ID discrimination works, results herein reinforce the exploitability of constellation-based PHY layer features and the ability for those features to be practically implemented to enhance CI security. Prior work is extended by formalizing a device ID verification process that enables rogue device detection demonstration under physical access attack conditions that include unauthorized devices mimicking bit-level credentials of authorized network devices. The work transitions from distance-based to probability-based measures of similarity derived from empirical Multivariate Normal Probability Density Function (MVNPDF) statistics of multiple discriminant analysis radio frequency fingerprint projections. Demonstration results for Constellation-Based Distinct Native Attribute (CB-DNA) fingerprinting of WirelessHART adapters from two manufacturers includes 1) average cross-class percent correct classification of %C \u3e 90% across 28 different networks comprised of six authorized devices, and 2) average rogue rejection rate of 83.4% ≤ RRR ≤ 99.9% based on two held-out devices serving as attacking rogue devices for each network (a total of 120 individual rogue attacks). Using the MVNPDF measure proved most effective and yielded nearly 12% RRR improvement over a Euclidean distance measure

    Securing ZigBee Commercial Communications Using Constellation Based Distinct Native Attribute Fingerprinting

    Get PDF
    This work provides development of Constellation Based DNA (CB-DNA) Fingerprinting for use in systems employing quadrature modulations and includes network protection demonstrations for ZigBee offset quadrature phase shift keying modulation. Results are based on 120 unique networks comprised of seven authorized ZigBee RZSUBSTICK devices, with three additional like-model devices serving as unauthorized rogue devices. Authorized network device fingerprints are used to train a Multiple Discriminant Analysis (MDA) classifier and Rogue Rejection Rate (RRR) estimated for 2520 attacks involving rogue devices presenting themselves as authorized devices. With MDA training thresholds set to achieve a True Verification Rate (TVR) of TVR = 95% for authorized network devices, the collective rogue device detection results for SNR ≥ 12 dB include average burst-by-burst RRR ≈ 94% across all 2520 attack scenarios with individual rogue device attack performance spanning 83.32% \u3c RRR \u3c 99.81%

    The Z-Wave Routing Protocol and Its Security Implications

    Get PDF
    Z-Wave is a proprietary technology used to integrate sensors and actuators over RF and perform smart home and office automation services. Lacking implementation details, consumers are under-informed on the security aptitude of their installed distributed sensing and actuating systems. While the Physical (PHY) and Medium Access Control (MAC) layers of the protocol have been made public, details regarding the network layer are not available for analysis. Using a real-world Z-Wave network, the frame forwarding and topology management aspects of the Z-Wave routing protocol are reverse engineered. A security analysis is also performed on the network under study to identify source and data integrity vulnerabilities of the routing protocol. It is discovered that the topology and routes may be modified by an outsider through the exploitation of the blind trust inherent to the routing nodes of the network. A Black Hole attack is conducted on a real-world Z-Wave network to demonstrate a well-known routing attack that exploits the exposed vulnerabilities. As a result of the discoveries, several recommendations are made to enhance the security of the routing protocol

    Towards Authentication of IoMT Devices via RF Signal Classification

    Get PDF
    The increasing reliance on the Internet of Medical Things (IoMT) raises great concern in terms of cybersecurity, either at the device’s physical level or at the communication and transmission level. This is particularly important as these systems process very sensitive and private data, including personal health data from multiple patients such as real-time body measurements. Due to these concerns, cybersecurity mechanisms and strategies must be in place to protect these medical systems, defending them from compromising cyberattacks. Authentication is an essential cybersecurity technique for trustworthy IoMT communications. However, current authentication methods rely on upper-layer identity verification or key-based cryptography which can be inadequate to the heterogeneous Internet of Things (IoT) environments. This thesis proposes the development of a Machine Learning (ML) method that serves as a foundation for Radio Frequency Fingerprinting (RFF) in the authentication of IoMT devices in medical applications to improve the flexibility of such mechanisms. This technique allows the authentication of medical devices by their physical layer characteristics, i.e. of their emitted signal. The development of ML models serves as the foundation for RFF, allowing it to evaluate and categorise the released signal and enable RFF authentication. Multiple feature take part of the proposed decision making process of classifying the device, which then is implemented in a medical gateway, resulting in a novel IoMT technology.A confiança crescente na IoMT suscita grande preocupação em termos de cibersegurança, quer ao nível físico do dispositivo quer ao nível da comunicação e ao nível de transmissão. Isto é particularmente importante, uma vez que estes sistemas processam dados muito sensíveis e dados, incluindo dados pessoais de saúde de diversos pacientes, tais como dados em tempo real de medidas do corpo. Devido a estas preocupações, os mecanismos e estratégias de ciber-segurança devem estar em vigor para proteger estes sistemas médicos, defendendo-os de ciberataques comprometedores. A autenticação é uma técnica essencial de ciber-segurança para garantir as comunicações em sistemas IoMT de confiança. No entanto, os métodos de autenticação atuais focam-se na verificação de identidade na camada superior ou criptografia baseada em chaves que podem ser inadequadas para a ambientes IoMT heterogéneos. Esta tese propõe o desenvolvimento de um método de ML que serve como base para o RFF na autenticação de dispositivos IoMT para melhorar a flexibilidade de tais mecanismos. Isto permite a autenticação dos dispositivos médicos pelas suas características de camada física, ou seja, a partir do seu sinal emitido. O desenvolvimento de modelos de ML serve de base para o RFF, permitindo-lhe avaliar e categorizar o sinal libertado e permitir a autenticação do RFF. Múltiplas features fazem parte do processo de tomada de decisão proposto para classificar o dispositivo, que é implementada num gateway médico, resultando numa nova tecnologia IoMT

    RF Fingerprinting Unmanned Aerial Vehicles

    Get PDF
    As unmanned aerial vehicles (UAVs) continue to become more readily available, their use in civil, military, and commercial applications is growing significantly. From aerial surveillance to search-and-rescue to package delivery the use cases of UAVs are accelerating. This accelerating popularity gives rise to numerous attack possibilities for example impersonation attacks in drone-based delivery, in a UAV swarm, etc. In order to ensure drone security, in this project we propose an authentication system based on RF fingerprinting. Specifically, we extract and use the device-specific hardware impairments embedded in the transmitted RF signal to separate the identity of each UAV. To achieve this goal, AlexNet with the data augmentation technique was employed
    • …
    corecore