1,189 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    About Voice: A Longitudinal Study of Speaker Recognition Dataset Dynamics

    Full text link
    Like face recognition, speaker recognition is widely used for voice-based biometric identification in a broad range of industries, including banking, education, recruitment, immigration, law enforcement, healthcare, and well-being. However, while dataset evaluations and audits have improved data practices in computer vision and face recognition, the data practices in speaker recognition have gone largely unquestioned. Our research aims to address this gap by exploring how dataset usage has evolved over time and what implications this has on bias and fairness in speaker recognition systems. Previous studies have demonstrated the presence of historical, representation, and measurement biases in popular speaker recognition benchmarks. In this paper, we present a longitudinal study of speaker recognition datasets used for training and evaluation from 2012 to 2021. We survey close to 700 papers to investigate community adoption of datasets and changes in usage over a crucial time period where speaker recognition approaches transitioned to the widespread adoption of deep neural networks. Our study identifies the most commonly used datasets in the field, examines their usage patterns, and assesses their attributes that affect bias, fairness, and other ethical concerns. Our findings suggest areas for further research on the ethics and fairness of speaker recognition technology.Comment: 14 pages (23 with References and Appendix

    Towards Single-Channel Speech Separation in Noise and Reverberation

    Get PDF
    Many speech technologies, such as automatic speech recognition and speaker identification, are conventionally designed to only work on single speech streams. As a result, these systems can suffer severely degraded performance in cases of overlapping speech, i.e. when two or more people are speaking at the same time. Speech separation systems aim to address this problem by taking a recording of a speech mixture and outputting a single recording for each speaker in the mixture, where the interfering speech has been removed. The advancements in speech technology provided by deep neural networks have extended to speech separation, resulting in the first effectively functional single-channel speech separation systems. As performance of these systems has improved, there has been a desire to extend their capabilities beyond the clean studio recordings using close-talking microphones that the technology was initially developed on. In this dissertation, we focus on the extension of these technologies to the noisy and reverberant conditions more representative of real-world applications. Contributions of this dissertation include producing and releasing new data appropriate for training and evaluation of single-channel speech separation techniques, performing benchmark experiments to establish the degradation of conventional methods in more realistic settings, theoretical analysis of the impact, and development of new techniques targeted at improving system performance in these adverse conditions

    Register Variation Remains Stable Across 60 Languages

    Full text link
    This paper measures the stability of cross-linguistic register variation. A register is a variety of a language that is associated with extra-linguistic context. The relationship between a register and its context is functional: the linguistic features that make up a register are motivated by the needs and constraints of the communicative situation. This view hypothesizes that register should be universal, so that we expect a stable relationship between the extra-linguistic context that defines a register and the sets of linguistic features which the register contains. In this paper, the universality and robustness of register variation is tested by comparing variation within vs. between register-specific corpora in 60 languages using corpora produced in comparable communicative situations: tweets and Wikipedia articles. Our findings confirm the prediction that register variation is, in fact, universal

    Speech Enhancement for Automatic Analysis of Child-Centered Audio Recordings

    Get PDF
    Analysis of child-centred daylong naturalist audio recordings has become a de-facto research protocol in the scientific study of child language development. The researchers are increasingly using these recordings to understand linguistic environment a child encounters in her routine interactions with the world. These audio recordings are captured by a microphone that a child wears throughout a day. The audio recordings, being naturalistic, contain a lot of unwanted sounds from everyday life which degrades the performance of speech analysis tasks. The purpose of this thesis is to investigate the utility of speech enhancement (SE) algorithms in the automatic analysis of such recordings. To this effect, several classical signal processing and modern machine learning-based SE methods were employed 1) as a denoiser for speech corrupted with additive noise sampled from real-life child-centred daylong recordings and 2) as front-end for downstream speech processing tasks of addressee classification (infant vs. adult-directed speech) and automatic syllable count estimation from the speech. The downstream tasks were conducted on data derived from a set of geographically, culturally, and linguistically diverse child-centred daylong audio recordings. The performance of denoising was evaluated through objective quality metrics (spectral distortion and instrumental intelligibility) and through the downstream task performance. Finally, the objective evaluation results were compared with downstream task performance results to find whether objective metrics can be used as a reasonable proxy to select SE front-end for a downstream task. The results obtained show that a recently proposed Long Short-Term Memory (LSTM)-based progressive learning architecture provides maximum performance gains in the downstream tasks in comparison with the other SE methods and baseline results. Classical signal processing-based SE methods also lead to competitive performance. From the comparison of objective assessment and downstream task performance results, no predictive relationship between task-independent objective metrics and performance of downstream tasks was found
    • …
    corecore