5,242 research outputs found

    End-to-end resource management for federated delivery of multimedia services

    Get PDF
    Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario

    A Scalable Solution For Interactive Video Streaming

    Get PDF
    This dissertation presents an overall solution for interactive Near Video On Demand (NVOD) systems, where limited server and network resources prevent the system from servicing all customers’ requests. The interactive nature of recent workloads complicates matters further. Interactive requests require additional resources to be handled. This dissertation analyzes the system performance under a realistic workload using different stream merging techniques and scheduling policies. It considers a wide range of system parameters and studies their impact on the waiting and blocking metrics. In order to improve waiting customers experience, we propose a new scheduling policy for waiting customers that is fairer and delivers a descent performance. Blocking is a major issue in interactive NVOD systems and we propose a few techniques to minimize it. In particular, we study the maximum Interactive Stream (I-Stream) length (Threshold) that should be allowed in order to prevent a few requests from using the expensive I-Streams for a prolonged period of time, which starves other requests from a chance of using this valuable resource. Using a reasonable I-Stream threshold proves very effective in improving blocking metrics. Moreover, we introduce an I-Stream provisioning policy to dynamically shift resources based on the system requirements at the time. The proposed policy proves to be highly effective in improving the overall system performance. To account for both average waiting time and average blocking time, we introduce a new metric (Aggregate Delay) . We study the client-side cache management policy. We utilize the customer’s cache to service most interactive requests, which reduces the load on the server. We propose three purging algorithms to clear data when the cache gets full. Purge Oldest removes the oldest data in the cache, whereas Purge Furthest clears the furthest data from the client’s playback point. In contrast, Adaptive Purge tries to avoid purging any data that includes the customer’s playback point or the playback point of any stream that is being listened to by the client. Additionally, we study the impact of the purge block, which is the least amount of data to be cleared, on the system performance. Finally, we study the effect of bookmarking on the system performance. A video segment that is searched and watched repeatedly is called a hotspot and is pointed to by a bookmark. We introduce three enhancements to effectively support bookmarking. Specifically, we propose a new purging algorithm to avoid purging hotspot data if it is already cached. On top of that, we fetch hotspot data for customers not listening to any stream. Furthermore, we reserve multicast channels to fetch hotspot data

    An autonomic delivery framework for HTTP adaptive streaming in multicast-enabled multimedia access networks

    Get PDF
    The consumption of multimedia services over HTTP-based delivery mechanisms has recently gained popularity due to their increased flexibility and reliability. Traditional broadcast TV channels are now offered over the Internet, in order to support Live TV for a broad range of consumer devices. Moreover, service providers can greatly benefit from offering external live content (e. g., YouTube, Hulu) in a managed way. Recently, HTTP Adaptive Streaming (HAS) techniques have been proposed in which video clients dynamically adapt their requested video quality level based on the current network and device state. Unlike linear TV, traditional HTTP- and HAS-based video streaming services depend on unicast sessions, leading to a network traffic load proportional to the number of multimedia consumers. In this paper we propose a novel HAS-based video delivery architecture, which features intelligent multicasting and caching in order to decrease the required bandwidth considerably in a Live TV scenario. Furthermore we discuss the autonomic selection of multicasted content to support Video on Demand (VoD) sessions. Experiments were conducted on a large scale and realistic emulation environment and compared with a traditional HAS-based media delivery setup using only unicast connections

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge
    • …
    corecore