163,786 research outputs found

    Prioritized Random MAC Optimization via Graph-based Analysis

    Get PDF
    Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control protocols. The IRSA schemes have been mostly analyzed for theoretical scenarios for homogenous sources, where they are shown to substantially improve the system performance compared to classical slotted ALOHA protocols. In this work, we consider generic systems where sources in different importance classes compete for a common channel. We propose a new prioritized IRSA algorithm and derive the probability to correctly resolve collisions for data from each source class. We then make use of our theoretical analysis to formulate a new optimization problem for selecting the transmission strategies of heterogenous sources. We optimize both the replication probability per class and the source rate per class, in such a way that the overall system utility is maximized. We then propose a heuristic-based algorithm for the selection of the transmission strategy, which is built on intrinsic characteristics of the iterative decoding methods adopted for recovering from collisions. Experimental results validate the accuracy of the theoretical study and show the gain of well-chosen prioritized transmission strategies for transmission of data from heterogenous classes over shared wireless channels

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Implementation of Epidemic Routing with IP Convergence Layer in ns-3

    Get PDF
    We present the Epidemic routing protocol implementation in ns-3. It is a full-featured DTN protocol in that it supports the message abstraction and store-and-haul behavior. We compare the performance of our Epidemic routing ns-3 implementation with the existing implementation of Epidemic in the ONE simulator, and discuss the differences

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Design of conditions for emergence of self-replicators

    Full text link
    A self-replicator is usually understood to be an object of definite form that promotes the conversion of materials in its environment into a nearly identical copy of itself. The challenge of engineering novel, micro- or nano-scale self-replicators has attracted keen interest in recent years, both because exponential amplification is an attractive method for generating high yields of specific products, and also because self-reproducing entities have the potential to be optimized or adapted through rounds of iterative selection. Substantial steps forward have been achieved both in the engineering of particular self-replicating molecules, and also in characterizing the physical basis for possible mechanisms of self-replication. At present, however, there is need for a theoretical treatment of what physical conditions are most conducive to the emergence of novel self-replicating structures from a reservoir of building blocks on a desired time-scale. Here we report progress in addressing this need. By analyzing the dynamics of a generic class of heterogeneous particle mixtures whose reaction rates emerge from basic physical interactions, we demonstrate that the spontaneous discovery of self-replication is controlled by relatively generic features of the chemical space, namely: the dispersion in the distribution of reaction timescales and bound-state energies. Based on this analysis, we provide quantitative criteria that may aid experimentalists in designing a system capable of producing self-replicators, and in estimating the likely timescale for exponential growth to start.Comment: Supplementary Information is under the Ancillary Files ---
    • …
    corecore