30,913 research outputs found

    Optimal computation with non-unitary quantum walks

    Get PDF
    Quantum versions of random walks on the line and the cycle show a quadratic improvement over classical random walks in their spreading rates and mixing times, respectively. Non-unitary quantum walks can provide a useful optimisation of these properties, producing a more uniform distribution on the line, and faster mixing times on the cycle. We investigate the interplay between quantum and random dynamics by comparing the resources required, and examining numerically how the level of quantum correlations varies during the walk. We show numerically that the optimal non-unitary quantum walk proceeds such that the quantum correlations are nearly all removed at the point of the final measurement. This requires only O(logT) random bits for a quantum walk of T steps

    MCMC methods for functions modifying old algorithms to make\ud them faster

    Get PDF
    Many problems arising in applications result in the need\ud to probe a probability distribution for functions. Examples include Bayesian nonparametric statistics and conditioned diffusion processes. Standard MCMC algorithms typically become arbitrarily slow under the mesh refinement dictated by nonparametric description of the unknown function. We describe an approach to modifying a whole range of MCMC methods which ensures that their speed of convergence is robust under mesh refinement. In the applications of interest the data is often sparse and the prior specification is an essential part of the overall modeling strategy. The algorithmic approach that we describe is applicable whenever the desired probability measure has density with respect to a Gaussian process or Gaussian random field prior, and to some useful non-Gaussian priors constructed through random truncation. Applications are shown in density estimation, data assimilation in fluid mechanics, subsurface geophysics and image registration. The key design principle is to formulate the MCMC method for functions. This leads to algorithms which can be implemented via minor modification of existing algorithms, yet which show enormous speed-up on a wide range of applied problems

    Community detection in multiplex networks using locally adaptive random walks

    Full text link
    Multiplex networks, a special type of multilayer networks, are increasingly applied in many domains ranging from social media analytics to biology. A common task in these applications concerns the detection of community structures. Many existing algorithms for community detection in multiplexes attempt to detect communities which are shared by all layers. In this article we propose a community detection algorithm, LART (Locally Adaptive Random Transitions), for the detection of communities that are shared by either some or all the layers in the multiplex. The algorithm is based on a random walk on the multiplex, and the transition probabilities defining the random walk are allowed to depend on the local topological similarity between layers at any given node so as to facilitate the exploration of communities across layers. Based on this random walk, a node dissimilarity measure is derived and nodes are clustered based on this distance in a hierarchical fashion. We present experimental results using networks simulated under various scenarios to showcase the performance of LART in comparison to related community detection algorithms
    corecore