6,795 research outputs found

    Wireless Powered Dense Cellular Networks: How Many Small Cells Do We Need?

    Get PDF
    This paper focuses on wireless powered 5G dense cellular networks, where base station (BS) delivers energy to user equipment (UE) via the microwave radiation in sub-6 GHz or millimeter wave (mmWave) frequency, and UE uses the harvested energy for uplink information transmission. By addressing the impacts of employing different number of antennas and bandwidths at lower and higher frequencies, we evaluate the amount of harvested energy and throughput in such networks. Based on the derived results, we obtain the required small cell density to achieve an expected level of harvested energy or throughput. Also, we obtain that when the ratio of the number of sub-6 GHz BSs to that of the mmWave BSs is lower than a given threshold, UE harvests more energy from a mmWave BS than a sub-6 GHz BS. We find how many mmWave small cells are needed to perform better than the sub-6 GHz small cells from the perspectives of harvested energy and throughput. Our results reveal that the amount of harvested energy from the mmWave tier can be comparable to the sub-6 GHz counterpart in the dense scenarios. For the same tier scale, mmWave tier can achieve higher throughput. Furthermore, the throughput gap between different mmWave frequencies increases with the mmWave BS density.Comment: pages 1-14, accepted by IEEE Journal on Selected Areas in Communication

    Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale

    Get PDF
    Graphene is a promising material which has been proposed to build graphene plasmonic miniaturized antennas, or graphennas, which show excellent conditions for the propagation of Surface Plasmon Polariton (SPP) waves in the terahertz band. Due to their small size of just a few micrometers, graphennas allow the implementation of wireless communications among nanosystems, leading to a novel paradigm known as Graphene-enabled Wireless Communications (GWC). In this paper, an analytical framework is developed to evaluate how the channel capacity of a GWC system scales as its dimensions shrink. In particular, we study how the unique propagation of SPP waves in graphennas will impact the channel capacity. Next, we further compare these results with respect to the case when metallic antennas are used, in which these plasmonic effects do not appear. In addition, asymptotic expressions for the channel capacity are derived in the limit when the system dimensions tend to zero. In this scenario, necessary conditions to ensure the feasibility of GWC networks are found. Finally, using these conditions, new guidelines are derived to explore the scalability of various parameters, such as transmission range and transmitted power. These results may be helpful for designers of future GWC systems and networks.Peer ReviewedPostprint (author’s final draft

    Studying Light-Harvesting Models with Superconducting Circuits

    Full text link
    The process of photosynthesis, the main source of energy in the animate world, converts sunlight into chemical energy. The surprisingly high efficiency of this process is believed to be enabled by an intricate interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a new approach for studying photosynthetic models based on superconducting quantum circuits. In particular, we demonstrate the unprecedented versatility and control of our method in an engineered three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10510^5. With this system we show that the excitation transport between quantum coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.Comment: 8+12 pages, 4+12 figure
    corecore