53 research outputs found

    Novel Approaches in Landslide Monitoring and Data Analysis

    Get PDF
    Significant progress has been made in the last few years that has expanded the knowledge of landslide processes. It is, therefore, necessary to summarize, share and disseminate the latest knowledge and expertise. This Special Issue brings together novel research focused on landslide monitoring, modelling and data analysis

    Flow-3D CFD model of bifurcated open channel flow: setup and validation

    Get PDF
    Bifurcation is a morphological feature present in most of fluvial systems; where a river splits into two channels, each bearing a portion of the flow and sediments. Extensive theoretical studies of river bifurcations were performed to understand the nature of flow patterns at such diversions. Nevertheless, the complexity of the flow structure in the bifurcated channel has resulted in various constraints on physical experimentation, so computational modelling is required to investigate the phenomenon. The advantages of computational modelling compared with experimental research (e.g. simple variable control, reduced cost, optimize design condition etc.) are widely known. The great advancement of computer technologies and the exponential increase in power, memory storage and affordability of high-speed machines in the early 20th century led to evolution and wide application of numerical fluid flow simulations, generally referred to as Computational Fluid Dynamics {CFD). In this study, the open-channel flume with a lateral channel established by Momplot et al (2017) is modelled in Flow-3D. The original investigation on divided flow of equal widths as simulated in ANSYS Fluent and validated with velocity measurements

    Identifying and Ranking of Mechanized Tunneling Project's Risks by Using A Fuzzy Multi-Criteria Decision Making Technique

    Get PDF
    A tunneling project is one of the most significant infrastructure projects. Its implementation requires access to adequate data and use of unique proceedings; hence it has a special position among civil engineering projects. Unexpected and uncertain conditions in tunneling projects lead to an increase of potential risks during project implementation. Identifying and evaluating risks in tunneling projects are considered one of the significant challenges among civil engineers, which can cause proper risk management during tunnel construction. Therefore, this study aims to evaluate and rank the risks of the second part of the Emamzadeh Hashem tunnel in the north of Iran which was considered as a case study. For this purpose, twelve potential risks were identified by using geological studies and experts. Then, they were evaluated and ranked using effective fuzzy multi-criteria decision-making (FMCDM) techniques, namely fuzzy analytical hierarchical process (FAHP). The three decision variables were considered, including repeat chance, occurrence possibility, and efficacy. The results obtained indicated that the occurrence possibility was the most effective among the decision variables in this case study. In addition, Instability of the wall and lack of contractor’s experiences had the highest and lowest ranks with 0.103 and 0.052, respectively

    ISGSR 2011 - Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk

    Get PDF
    Scientific standards applicable to publication of BAWProceedings: http://izw.baw.de/publikationen/vzb_dokumente_oeffentlich/0/2020_07_BAW_Scientific_standards_conference_proceedings.pd
    corecore