165,467 research outputs found

    Short-term VHE variability in blazars: PKS 2155-304

    Full text link
    Context: The γ\gamma-ray blazar PKS 2155-304 has attracted considerable attention because of its extreme TeV variability characteristics during an exceptional flaring period in 2006. Among the observed key findings are (i) a minimum variability timescale as short as 200\sim 200 sec and (ii) highly variable TeV emission, which in the frequency interval [10410^{-4} Hz, 10210^{-2} Hz] can be described by a log-normal distribution and suggests an underlying multiplicative (and not additive) process. Aims: Simultaneously accounting for these findings appears difficult within conventional approaches. Following earlier suggestions for the TeV blazar Mkn 501, we explore a possible scenario where PKS 2155-304 is supposed to harbor a supermassive binary black hole system and where the observed TeV variability is dominated by emission from the less massive black hole. Methods: We analyze the constraints on the very high energy (VHE) source imposed by the observed variability characteristics and the integrated VHE luminosity output, and discuss its implications for a binary black hole system. Results: We show that for a secondary mass of mBH107Mm_{\rm BH} \sim 10^7 M_{\odot}, fluctuations in the disk accretion rate that feed the jet could account for the observed red-noise type variability process down to frequencies of 102\sim 10^{-2} Hz. Jet curvature induced by orbital motion, on the other hand, could further relax constraints on the intrinsic jet speeds. Conclusions: Because a binary system can lead to different (yet not independent) periodicities in different energy bands, a longterm (quasi-) periodicity analysis could offer important insights into the real nature of the central engine of PKS~2155-304.Comment: 5 pages, 1 figure; A&A in pres

    A fully digital power supply noise thermometer

    Get PDF
    Power Supply Noise (PSN) is one of the main concerns in scaled technology circuits, both if performance reliability must be assured and if power supply is to be dynamically reduced for dissipation regulation. In this paper we propose a new system for digitally sensing Power Supply and Ground levels that can be both transferred to the output for verification purposes and used by a control block within the circuit under test (CUT) for the activation of power aware policies. The sensor system shows very low overhead in terms of power and area, and works at the nominal CUT frequency. It allows to change on-site the Power Supply and Ground ranges to be sensed and, after a fine tuning, can be arranged for a process variation aware measures. This sensor is fully digital and standard cell based and can be used for every type of architecture on a systematic basis for PSN measure as scan chains are for fault verification. It thus represents a change of paradigm in the way in which PSN measure systems are thought nowaday

    Price Variations in a Stock Market With Many Agents

    Get PDF
    Large variations in stock prices happen with sufficient frequency to raise doubts about existing models, which all fail to account for non-Gaussian statistics. We construct simple models of a stock market, and argue that the large variations may be due to a crowd effect, where agents imitate each other's behavior. The variations over different time scales can be related to each other in a systematic way, similar to the Levy stable distribution proposed by Mandelbrot to describe real market indices. In the simplest, least realistic case, exact results for the statistics of the variations are derived by mapping onto a model of diffusing and annihilating particles, which has been solved by quantum field theory methods. When the agents imitate each other and respond to recent market volatility, different scaling behavior is obtained. In this case the statistics of price variations is consistent with empirical observations. The interplay between ``rational'' traders whose behavior is derived from fundamental analysis of the stock, including dividends, and ``noise traders'', whose behavior is governed solely by studying the market dynamics, is investigated. When the relative number of rational traders is small, ``bubbles'' often occur, where the market price moves outside the range justified by fundamental market analysis. When the number of rational traders is larger, the market price is generally locked within the price range they define.Comment: 39 pages (Latex) + 20 Figures and missing Figure 1 (sorry), submitted to J. Math. Eco

    Concepts and methods in optimization of integrated LC VCOs

    Get PDF
    Underlying physical mechanisms controlling the noise properties of oscillators are studied. This treatment shows the importance of inductance selection for oscillator noise optimization. A design strategy centered around an inductance selection scheme is executed using a practical graphical optimization method to optimize phase noise subject to design constraints such as power dissipation, tank amplitude, tuning range, startup condition, and diameters of spiral inductors. The optimization technique is demonstrated through a design example, leading to a 2.4-GHz fully integrated, LC voltage-controlled oscillator (VCO) implemented using 0.35-μm MOS transistors. The measured phase-noise values are -121, -117, and -115 dBc/Hz at 600-kHz offset from 1.91, 2.03, and 2.60-GHz carriers, respectively. The VCO dissipates 4 mA from a 2.5-V supply voltage. The inversion mode MOSCAP tuning is used to achieve 26% of tuning range. Two figures of merit for performance comparison of various oscillators are introduced and used to compare this work to previously reported results

    Voltage noise analysis with ring oscillator clocks

    Get PDF
    Voltage noise is the main source of dynamic variability in integrated circuits and a major concern for the design of Power Delivery Networks (PDNs). Ring Oscillators Clocks (ROCs) have been proposed as an alternative to mitigate the negative effects of voltage noise as technology scales down and power density increases. However, their effectiveness highly depends on the design parameters of the PDN, power consumption patterns of the system and spatial locality of the ROCs within the clock domains. This paper analyzes the impact of the PDN parameters and ROC location on the robustness to voltage noise. The capability of reacting instantaneously to unpredictable voltage droops makes ROCs an attractive solution, which allows to reduce the amount of decoupling capacitance without downgrading performance. Tolerance to voltage noise and related benefits can be increased by using multiple ROCs and reducing the size of the clock domains. The analysis shows that up to 83% of the margins for voltage noise and up to 27% of the leakage power can be reduced by using local ROCs.Peer ReviewedPostprint (author's final draft
    corecore