260 research outputs found

    Experimental investigations of two-phase flow measurement using ultrasonic sensors

    Get PDF
    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measurement of the parameters of the two- phase slug flow. The use of the HHT technique is sensitive enough to detect the hydrodynamics of the slug flow. The results of the experiments are compared with correlations in the literature and are in good agreement. Next, experimental data of air-water two-phase flow under slug, elongated bubble, stratified-wavy and stratified flow regimes were used to develop an objective flow regime classification of two-phase flow using the ultrasonic Doppler sensor and artificial neural network (ANN). The classifications using the power spectral density (PSD) and discrete wavelet transform (DWT) features have accuracies of 87% and 95.6% respectively. This is considerably more promising as it uses non-invasive and non-radioactive sensors. Moreover, ultrasonic pulse wave transducers with centre frequencies of 1MHz and 7.5MHz were used to measure two-phase flow both in horizontal and vertical flow pipes. The liquid level measurement was compared with the conductivity probes technique and agreed qualitatively. However, in the vertical with a gas volume fraction (GVF) higher than 20%, the ultrasound signals were attenuated. Furthermore, gas-liquid and oil-water two-phase flow rates in a vertical upward flow were measured using a combination of an ultrasound Doppler sensor and gamma densitometer. The results showed that the flow gas and liquid flow rates measured are within ±10% for low void fraction tests, water-cut measurements are within ±10%, densities within ±5%, and void fractions within ±10%. These findings are good results for a relatively fast flowing multiphase flow

    Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    Get PDF
    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of '1-of-C coding method for classification' was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Research and technology 1991 annual report

    Get PDF
    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, NASA Kennedy is placing increasing emphasis on the center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technical tools are being developed which are needed to execute the center's mission relative to future programs. The Engineering Development Directorate encompasses most of the labs and other center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1991 annual report

    Two-phase slug flow measurement using ultra-sonic techniques in combination with T-Y junctions

    Get PDF
    The accurate measurement of multiphase flows of oil/water/gas is a critical element of oil exploration and production. Thus, over the last three decades; the development and deployment of in-line multiphase flow metering systems has been a major focus worldwide. Accurate measurement of multiphase flow in the oil and gas industry is difficult because there is a wide range of flow regimes and multiphase meters do not generally perform well under the intermittent slug flow conditions which commonly occur in oil production. This thesis investigates the use of Doppler and cross-correlation ultrasonic measurements made in different high gas void fraction flow, partially separated liquid and gas flows, and homogeneous flow and raw slug flow, to assess the accuracy of measurement in these regimes. This approach has been tested on water/air flows in a 50mm diameter pipe facility. The system employs a partial gas/liquid separation and homogenisation using a T-Y junction configuration. A combination of ultrasonic measurement techniques was used to measure flow velocities and conductivity rings to measure the gas fraction. In the partially separated regime, ultrasonic cross-correlation and conductivity rings are used to measure the liquid flow-rate. In the homogeneous flow, a clamp-on ultrasonic Doppler meter is used to measure the homogeneous velocity and combined with conductivity ring measurements to provide measurement of the liquid and gas flow-rates. The slug flow regime measurements employ the raw Doppler shift data from the ultrasonic Doppler flowmeter, together with the slug flow closure equation and combined with gas fraction obtained by conductivity rings, to determine the liquid and gas flow-rates. Measurements were made with liquid velocities from 1.0m/s to 2.0m/s with gas void fractions up to 60%. Using these techniques the accuracies of the liquid flow-rate measurement in the partially separated, homogeneous and slug regimes were 10%, 10% and 15% respectively. The accuracy of the gas flow-rate in both the homogeneous and raw slug regimes was 10%. The method offers the possibility of further improvement in the accuracy by combining measurement from different regimes

    High efficiency dynamic pressure based flow measurement

    Get PDF
    Over the past few decades considerable attention have been directed towards the development of different types of flow-metering techniques. High pressure drop after passing the metering device and partial obstruction of the flow represent the two most common problems for the majority of the existing flow-metering devices. The main intention of the current study was to overcome or minimize these two issues. The principle objectives were developing a low-cost measurement system and setup to measure the flow in pipes of small diameters (0.5” to 4”), and performing an analytical / numerical model that enables to extract the distinction of the dynamic pressure throughout the flow. Both analytical and numerical solutions of the fluid flow inside the pipe indicate forming of a parabolic velocity profile across the pipe in the fully developed flow region. Dynamic pressure variation due to velocity change across the pipe is used as the fundamental measurement principle in this work. The equipped cantilever beams with piezo-resistive materials are used as sensor for detecting the induced signals in three different levels across the pipe. The collected signals are used to reconstruct the parabolic velocity profile. Further, the integration of the parabolic profile in the cross-section area of the pipe will yield to the flow value. The constructed sensors with strain gages are connected to a Wheatstone-Bridge. The resistance variation due to the strain changing in cantilever platform converts to voltage variation by the Wheatstone-Bridge. Signal amplification and filtering are carried out by a dedicated circuit board. The work was extended to inkjet-printing of the conductive ink which is introduced as an alternative method for piezoresistive sensor fabrication. Easiness and fast-fabrication process are two important factors which give ability to mass production of low-cost piezoresistive sensors

    The use of ultrasound for detecting particles suspended in lubricant and hydraulic fluids

    Get PDF
    Imperial Users onl

    Electrical Resistance Tomography for sewage flow measurements

    Get PDF

    Applications of discrete wavelet transform for feature extraction to increase the accuracy of monitoring systems of liquid petroleum products

    Get PDF
    This paper presents a methodology to monitor the liquid petroleum products which pass through transmission pipes. A simulation setup consisting of an X-ray tube, a detector, and a pipe was established using a Monte Carlo n-particle X-version transport code to investigate a two-by-two mixture of four different petroleum products, namely, ethylene glycol, crude oil, gasoline, and gasoil, in deferent volumetric ratios. After collecting the signals of each simulation, discrete wavelet transform (DWT) was applied as the feature extraction system. Then, the statistical feature, named the standard deviation, was calculated from the approximation of the fifth level, and the details of the second to fifth level provide appropriate inputs for neural network training. Three multilayer perceptron neural networks were utilized to predict the volume ratio of three types of petroleum products, and the volume ratio of the fourth product could easily be obtained from the results of the three presented networks. Finally, a root mean square error of less than 1.77 was obtained in predicting the volume ratio, which was much more accurate than in previous research. This high accuracy was due to the use of DWT for feature extraction
    • …
    corecore