2,251 research outputs found

    Magnetic noise reduction of in-wheel permanent magnet synchronous motors for light-duty electric vehicles

    Get PDF
    This paper presents study of a multi-slice subdomain model (MS-SDM) for persistent low-frequency sound, in a wheel hub-mounted permanent magnet synchronous motor (WHM-PMSM) with a fractional-slot non-overlapping concentrated winding for a light-duty, fully electric vehicle applications. While this type of winding provides numerous potential benefits, it has also the largest magnetomotive force (MMF) distortion factor, which leads to the electro-vibro-acoustics production, unless additional machine design considerations are carried out. To minimize the magnetic noise level radiated by the PMSM, a skewing technique is targeted with consideration of the natural frequencies under a variable-speed-range analysis. To ensure the impact of the minimization technique used, magnetic force harmonics, along with acoustic sonograms, is computed by MS-SDM and verified by 3D finite element analysis. On the basis of the studied models, we derived and experimentally verified the optimized model with 5 dBA reduction in A-weighted sound power level by due to the choice of skew angle. In addition, we investigated whether or not the skewing slice number can be of importance on the vibro-acoustic objectives in the studied WHM-PMSM.Postprint (published version

    Computation of core losses in electrical machines using improved models for laminated steel

    Get PDF
    Two new models for specific power losses in cold-rolled motor lamination steel are described together with procedures for coefficient identification from standard multifrequency Epstein or single sheet tests. The eddy-current and hysteresis loss coefficients of the improved models are dependent on induction (flux density) and/or frequency, and the errors are substantially lower than those of conventional models over a very wide range of sinusoidal excitation, from 20 Hz to 2 kHz and from 0.05 up to 2 T. The model that considers the coefficients to be variable, with the exception of the hysteresis loss power coefficient that has a constant value of 2, is superior in terms of applicability and phenomenological support. Also included are a comparative study of the material models on three samples of typical steel, mathematical formulations for the extension from the frequency to the time domain, and examples of validation from electrical machine studies

    Effect of winding harmonics on the asynchronous torque of a single-phase line start permanant-magnet motor

    Get PDF
    This paper presents an analytical method for calculating the effect of winding harmonics on the asynchronous torque of a single-phase line-start permanent-magnet motor. The method is an extension of earlier work, which combines symmetrical-component analysis with dq-axis theory to model the various components of forward and backward rotating fields. The effect of individual winding harmonics is brought out both theoretically and experimentally, by comparing calculated and measured torque/speed characteristics for a series of six motors with different distributions of turns in both the main and auxiliary windings

    On the variation with flux and frequency of the core loss coefficients in electrical machines

    Get PDF
    A model of core losses, in which the hysteresis coefficients are variable with the frequency and induction (flux density) and the eddy-current and excess loss coefficients are variable only with the induction, is proposed. A procedure for identifying the model coefficients from multifrequency Epstein tests is described, and examples are provided for three typical grades of non-grain-oriented laminated steel suitable for electric motor manufacturing. Over a wide range of frequencies between 20-400 Hz and inductions from 0.05 to 2 T, the new model yielded much lower errors for the specific core losses than conventional models. The applicability of the model for electric machine analysis is also discussed, and examples from an interior permanent-magnet and an induction motor are included

    An Improved Sideband Current Harmonic Model of Interior PMSM Drive by Considering Magnetic Saturation and Cross-Coupling Effects

    Get PDF
    The sideband current harmonics, as parasitic characteristics in permanent-magnet synchronous machine (PMSM) drives with space vector pulsewidth modulation technique, will increase the corresponding electromagnetic loss, torque ripple, vibration, and acoustic noises. Therefore, fast yet accurate evaluation of the resultant sideband current harmonic components is of particular importance during the design stage of the drive system. However, the inevitable magnetic saturation and cross-coupling effects in interior PMSM drives would have a significant impact on the current components, while the existing analytical sideband current harmonic model neglects those effects. This paper introduces a significant improvement on the analytical model by taking into account these effects with corresponding nonlinear factors. Experimental results are carried out to underpin the accuracy improvements of the predictions from the proposed model over the existing analytical one. The proposed model can offer a very detailed and insightful revelation of impacts of the magnetic saturation and cross-coupling effects on the corresponding sideband current harmonics

    Iron Loss Computation in a Synchronous Machine from a Static Field Solution

    Get PDF
    Owing to the increasing energy demand, a highly efficient synchronous machine can play a crucial role in energy saving by reducing energy consumption. An optimum machine design requires a good estimation of the power losses, particularly the iron loss due to the complexity involved with the accurate loss prediction. The prediction of iron loss in the synchronous machine has drawn massive attraction due to the extensive use in the power stations and other industrial applications. The conventional time-stepping method for iron loss calculation is computationally highly expensive and can be productive as long as the number of computations remains in a respectable range. However, the situation is different when an excessive number of computations are required, such as for machine optimization, which turns this method into unprofitable. The development of fast and computationally efficient static analysis in case of synchronous machine induce a thought of computing the iron loss using this method which can minimize the computation cost and substitute the time consuming traditional loss computation method. Based on this notion, an effective iron loss computation technique was developed from a single static field simulation which is much faster than the conventional time-stepping method and provide a fair accuracy. A two-dimensional Finite Element Method was used, and the model was integrated with the static FEM analysis program in the in-house software FCSMEK. The model was applied to a 12.5 MW salient pole synchronous machine, and the computational accuracy was validated with the conventional time-stepping simulation
    • 

    corecore