4,298 research outputs found

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    TrusNet: Peer-to-Peer Cryptographic Authentication

    Get PDF
    Originally, the Internet was meant as a general purpose communication protocol, transferring primarily text documents between interested parties. Over time, documents expanded to include pictures, videos and even web pages. Increasingly, the Internet is being used to transfer a new kind of data which it was never designed for. In most ways, this new data type fits in naturally to the Internet, taking advantage of the near limit-less expanse of the protocol. Hardware protocols, unlike previous data types, provide a unique set security problem. Much like financial data, hardware protocols extended across the Internet must be protected with authentication. Currently, systems which do authenticate do so through a central server, utilizing a similar authentication model to the HTTPS protocol. This hierarchical model is often at odds with the needs of hardware protocols, particularly in ad-hoc networks where peer-to-peer communication is prioritized over a hierarchical model. Our project attempts to implement a peer-to-peer cryptographic authentication protocol to be used to protect hardware protocols extending over the Internet. The TrusNet project uses public-key cryptography to authenticate nodes on a distributed network, with each node locally managing a record of the public keys of nodes which it has encountered. These keys are used to secure data transmission between nodes and to authenticate the identities of nodes. TrusNet is designed to be used on multiple different types of network interfaces, but currently only has explicit hooks for Internet Protocol connections. As of June 2016, TrusNet has successfully achieved a basic authentication and communication protocol on Windows 7, OSX, Linux 14 and the Intel Edison. TrusNet uses RC-4 as its stream cipher and RSA as its public-key algorithm, although both of these are easily configurable. Along with the library, TrusNet also enables the building of a unit testing suite, a simple UI application designed to visualize the basics of the system and a build with hooks into the I/O pins of the Intel Edison allowing for a basic demonstration of the system

    Naor-Yung paradigm with shared randomness and applications

    Get PDF
    The Naor-Yung paradigm (Naor and Yung, STOC’90) allows to generically boost security under chosen-plaintext attacks (CPA) to security against chosen-ciphertext attacks (CCA) for public-key encryption (PKE) schemes. The main idea is to encrypt the plaintext twice (under independent public keys), and to append a non-interactive zero-knowledge (NIZK) proof that the two ciphertexts indeed encrypt the same message. Later work by Camenisch, Chandran, and Shoup (Eurocrypt’09) and Naor and Segev (Crypto’09 and SIAM J. Comput.’12) established that the very same techniques can also be used in the settings of key-dependent message (KDM) and key-leakage attacks (respectively). In this paper we study the conditions under which the two ciphertexts in the Naor-Yung construction can share the same random coins. We find that this is possible, provided that the underlying PKE scheme meets an additional simple property. The motivation for re-using the same random coins is that this allows to design much more efficient NIZK proofs. We showcase such an improvement in the random oracle model, under standard complexity assumptions including Decisional Diffie-Hellman, Quadratic Residuosity, and Subset Sum. The length of the resulting ciphertexts is reduced by 50%, yielding truly efficient PKE schemes achieving CCA security under KDM and key-leakage attacks. As an additional contribution, we design the first PKE scheme whose CPA security under KDM attacks can be directly reduced to (low-density instances of) the Subset Sum assumption. The scheme supports keydependent messages computed via any affine function of the secret ke
    • …
    corecore