1,936 research outputs found

    Impedance-compensated grid synchronisation for extending the stability range of weak grids with voltage source converters

    Get PDF
    This paper demonstrates how the range of stable power transfer in weak grids with voltage source converters (VSCs) can be extended by modifying the grid synchronisation mechanism of a conventional synchronous reference frame phase locked loop (PLL). By introducing an impedance-conditioning term in the PLL, the VSC control system can be virtually synchronised to a stronger point in the grid to counteract the instability effects caused by high grid impedance. To verify the effectiveness of the proposed approach, the maximum static power transfer capability and the small-signal stability range of a system with a VSC HVDC terminal connected to a weak grid are calculated from an analytical model with different levels of impedance-conditioning in the PLL. Such calculations are presented for two different configurations of the VSC control system, showing how both the static power transfer capability and the small-signal stability range can be significantly improved. The validity of the stability assessment is verified by time-domain simulations in the Matlab/Simulink environment.Peer ReviewedPostprint (published version

    Small-Signal and Transient Stability Analysis of Voltage-Source Converters

    Get PDF

    Symmetrical PLL for SISO Impedance Modeling and Enhanced Stability in Weak Grids

    Get PDF

    Synchronization Stability of Grid-Connected Converters under Grid Faults

    Get PDF

    Grid-Synchronization Stability of Converter-Based Resources - An Overview

    Get PDF

    Grid-Forming Converter Control Method to Improve DC-Link Stability in Inverter-Based AC Grids

    Get PDF
    As renewable energy sources with power-electronic interfaces become functionally and economically viable alternatives to bulk synchronous generators, it becomes vital to understand the behavior of these inverter-interfaced sources in ac grids devoid of any synchronous generation, i.e. inverter-based grids. In these types of grids, the inverters need to operate in parallel in grid-forming mode to regulate and synchronize their output voltage while also delivering the power required by the loads. It is common practice, therefore, to mimic the parallel operation control of the very synchronous generators that these inverter-based sources are meant to replace. This practice, however, is based on impractical assumptions and completely disregards the key differences between synchronous machines and power electronic inverters, as well as the dynamics of the dc source connected to the inverter. This dissertation aims to highlight the shortcomings of conventional controllers and derive an improved grid-forming inverter controller that is effective in parallel ac operation without sacrificing dc-link stability. This dissertation begins with a basis for understanding the control concepts used by grid-forming inverters in ac grids and exploring where existing ideas and methods are lacking in terms of efficient and stable inverter control. The knowledge gained from the literature survey is used to derive the requirements for a grid-forming control method that is appropriate for inverter-based ac grids. This is followed by a review and comparative analysis of the performance of five commonly used control techniques for grid-forming inverters, which reveal that nested loop controllers can have a destabilizing effect under changing grid conditions. This observation is further explored through an impedance-based stability analysis of single-loop and nested-loop controllers in grid-forming inverters, followed by a review of impedance-based analysis methods that can be used to assess the control design for grid-forming inverters. An improved grid-forming inverter controller is proposed with a demonstrated ability to achieve both dc-link and ac output stability with proportional power-sharing. This dissertation ends with a summary of the efforts and contributions as well as ideas for future applications of the proposed controller
    • …
    corecore