2,079 research outputs found

    Colored noise in oscillators. Phase-amplitude analysis and a method to avoid the Ito-Stratonovich dilemma

    Get PDF
    We investigate the effect of time-correlated noise on the phase fluctuations of nonlinear oscillators. The analysis is based on a methodology that transforms a system subject to colored noise, modeled as an Ornstein-Uhlenbeck process, into an equivalent system subject to white Gaussian noise. A description in terms of phase and amplitude deviation is given for the transformed system. Using stochastic averaging technique, the equations are reduced to a phase model that can be analyzed to characterize phase noise. We find that phase noise is a drift-diffusion process, with a noise-induced frequency shift related to the variance and to the correlation time of colored noise. The proposed approach improves the accuracy of previous phase reduced models

    Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise

    Full text link
    An effective white-noise Langevin equation is derived that describes long-time phase dynamics of a limit-cycle oscillator subjected to weak stationary colored noise. Effective drift and diffusion coefficients are given in terms of the phase sensitivity of the oscillator and the correlation function of the noise, and are explicitly calculated for oscillators with sinusoidal phase sensitivity functions driven by two typical colored Gaussian processes. The results are verified by numerical simulations using several types of stochastic or chaotic noise. The drift and diffusion coefficients of oscillators driven by chaotic noise exhibit anomalous dependence on the oscillator frequency, reflecting the peculiar power spectrum of the chaotic noise.Comment: 16 pages, 6 figure

    Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach

    Get PDF
    We introduce a stochastic model for the determination of phase noise in optoelectronic oscillators. After a short overview of the main results for the phase diffusion approach in autonomous oscillators, an extension is proposed for the case of optoelectronic oscillators where the microwave is a limit-cycle originated from a bifurcation induced by nonlinearity and time-delay. This Langevin approach based on stochastic calculus is also successfully confronted with experimental measurements.Comment: 18 pages, 7 figures, 11 references. Submitted to IEEE J. of Quantum Electronics, May 200

    Colored Noise in Oscillators. Phase-Amplitude Analysis and a Method to Avoid the Itô-Stratonovich Dilemma

    Get PDF
    We investigate the effect of time-correlated noise on the phase fluctuations of nonlinear oscillators. The analysis is based on a methodology that transforms a system subject to colored noise, modeled as an Ornstein-Uhlenbeck process, into an equivalent system subject to white Gaussian noise. A description in terms of phase and amplitude deviation is given for the transformed system. Using stochastic averaging technique, the equations are reduced to a phase model that can be analyzed to characterize phase noise. We find that phase noise is a drift-diffusion process, with a noise-induced frequency shift related to the variance and to the correlation time of colored noise. The proposed approach improves the accuracy of the previous phase reduced models

    The Rotating-Wave Approximation: Consistency and Applicability from an Open Quantum System Analysis

    Full text link
    We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly reproduced, but the details of the quantum state may not be. The RWA made before the trace is more problematic: it results in incorrect values for environmentally-induced shifts to system frequencies, and the resulting theory has no Markovian limit. We point out that great care must be taken when coupling two open systems together under the RWA. Though the RWA can yield a master equation of Lindblad form similar to what one might get in the Markovian limit with white noise, the master equation for the two coupled systems is not a simple combination of the master equation for each system, as is possible in the Markovian limit. Such a naive combination yields inaccurate dynamics. To obtain the correct master equation for the composite system a proper consideration of the non-Markovian dynamics is required.Comment: 17 pages, 0 figures

    Anomalous diffusion in a random nonlinear oscillator due to high frequencies of the noise

    Full text link
    We study the long time behaviour of a nonlinear oscillator subject to a random multiplicative noise with a spectral density (or power-spectrum) that decays as a power law at high frequencies. When the dissipation is negligible, physical observables, such as the amplitude, the velocity and the energy of the oscillator grow as power-laws with time. We calculate the associated scaling exponents and we show that their values depend on the asymptotic behaviour of the external potential and on the high frequencies of the noise. Our results are generalized to include dissipative effects and additive noise.Comment: Expanded version of Proceedings StatPhys-Kolkata V
    corecore