635 research outputs found

    Strict lower bounds with separation of sources of error in non-overlapping domain decomposition methods

    Get PDF
    This article deals with the computation of guaranteed lower bounds of the error in the framework of finite element (FE) and domain decomposition (DD) methods. In addition to a fully parallel computation, the proposed lower bounds separate the algebraic error (due to the use of a DD iterative solver) from the discretization error (due to the FE), which enables the steering of the iterative solver by the discretization error. These lower bounds are also used to improve the goal-oriented error estimation in a substructured context. Assessments on 2D static linear mechanic problems illustrate the relevance of the separation of sources of error and the lower bounds' independence from the substructuring. We also steer the iterative solver by an objective of precision on a quantity of interest. This strategy consists in a sequence of solvings and takes advantage of adaptive remeshing and recycling of search directions.Comment: International Journal for Numerical Methods in Engineering, Wiley, 201

    Improved recovery of admissible stress in domain decomposition methods - application to heterogeneous structures and new error bounds for FETI-DP

    Get PDF
    This paper investigates the question of the building of admissible stress field in a substructured context. More precisely we analyze the special role played by multiple points. This study leads to (1) an improved recovery of the stress field, (2) an opportunity to minimize the estimator in the case of heterogeneous structures (in the parallel and sequential case), (3) a procedure to build admissible fields for FETI-DP and BDDC methods leading to an error bound which separates the contributions of the solver and of the discretization

    Isogeometric Analysis and Harmonic Stator-Rotor Coupling for Simulating Electric Machines

    Full text link
    This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example

    Multilevel Preconditioning of Discontinuous-Galerkin Spectral Element Methods, Part I: Geometrically Conforming Meshes

    Get PDF
    This paper is concerned with the design, analysis and implementation of preconditioning concepts for spectral Discontinuous Galerkin discretizations of elliptic boundary value problems. While presently known techniques realize a growth of the condition numbers that is logarithmic in the polynomial degrees when all degrees are equal and quadratic otherwise, our main objective is to realize full robustness with respect to arbitrarily large locally varying polynomial degrees degrees, i.e., under mild grading constraints condition numbers stay uniformly bounded with respect to the mesh size and variable degrees. The conceptual foundation of the envisaged preconditioners is the auxiliary space method. The main conceptual ingredients that will be shown in this framework to yield "optimal" preconditioners in the above sense are Legendre-Gauss-Lobatto grids in connection with certain associated anisotropic nested dyadic grids as well as specially adapted wavelet preconditioners for the resulting low order auxiliary problems. Moreover, the preconditioners have a modular form that facilitates somewhat simplified partial realizations. One of the components can, for instance, be conveniently combined with domain decomposition, at the expense though of a logarithmic growth of condition numbers. Our analysis is complemented by quantitative experimental studies of the main components.Comment: 41 pages, 11 figures; Major revision: rearrangement of the contents for better readability, part on wavelet preconditioner adde

    Domain decomposition preconditioners of Neumann-Neumann type for hp‐approximations on boundary layer meshes in three dimensions

    Get PDF
    We develop and analyse Neumann-Neumann methods for hp finite‐element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. These are meshes that are highly anisotropic where the aspect ratio typically grows exponentially with the polynomial degree. The condition number of our preconditioners is shown to be independent of the aspect ratio of the mesh and of potentially large jumps of the coefficients. In addition, it only grows polylogarithmically with the polynomial degree, as in the case of p approximations on shape‐regular meshes. This work generalizes our previous one on two‐dimensional problems in Toselli & Vasseur (2003a, submitted to Numerische Mathematik, 2003c to appear in Comput. Methods Appl. Mech. Engng.) and the estimates derived here can be employed to prove condition number bounds for certain types of FETI method
    • 

    corecore