45,252 research outputs found

    Analisis dan Penerapan Algoritma Particle Swarm Optimization (PSO) pada Optimasi Penjadwalan Sumber Daya Proyek Analysis and Implementation of Particle Swarm Optimization (PSO) Algorithm on the Optimization of Project Resource Scheduling

    Get PDF
    ABSTRAKSI: Penjadwalan sumber daya (resource scheduling) merupakan salah satu perencanaan operasional proyek yang didalamnya terdapat proses mengidentifikasi jenis dan jumlah sumber daya sesuai dengan jadwal keperluan yang telah ditetapkan. Kebutuhan sumber daya untuk masing-masing satuan waktu bisa berbeda, sehingga ada kemungkinan terjadi fluktuasi kebutuhan sumber daya. Oleh karena itu, fluktuasi yang tinggi selama perjalanan proyek harus dihindari, dengan kata lain diperlukan perataan penggunaan sumber daya (resource leveling) sepanjang waktu proyek. Permasalahan optimasi perataan penggunaan sumber daya merupakan masalah yang sudah umum dan telah dipelajari dalam waktu yang lama, namun perlu dicari metodologi atau pendekatan teknis yang memadai dan sampai saat ini telah berkembang beberapa solusi alternatif yang ditawarkan. Pada Tugas Akhir ini, dibahas penerapan algoritma particle swarm optimization (PSO), pada optimasi penjadwalan sumber daya proyek. Hasil penelitian menunjukkan bahwa algoritma particle swarm optimization dapat diterapkan pada permasalahan optimasi perataan penggunaan sumber daya. Keefektifan algoritma ini didemonstrasikan dengan beberapa studi kasus. Dari test yang telah dilakukan menunjukkan bahwa pendekatan ini dapat memberikan solusi yang bagus dengan fluktuasi yang minimal.Kata Kunci : penjadwalan sumber daya proyek, fluktuasi, Resource Leveling, PSOABSTRACT: Resource scheduling is one of project operational planning which there is have process identifies resources amount and type according to the activity that scheduled. Requirements of resources for each times can different, so maybe there is fluctuation of need resources. So, a high of fluctuation during project tour must be avoid, i.e.needed resource leveling during project time. The problem of resource leveling optimization is a common problem in have studied at long time, but must be search a new methodology or several heuristic in order to produce the optimal solutions of the problem. In this final assignment, we discuss an implementation of the particle swarm optimization (PSO), on the optimization of project resource scheduling. Final result shows that particle swarm optimization can be implement on the optimization of resource leveling problem. The effectiveness of this heuristic is demonstrated with case studies. Preliminary test shows that this approach can give a good solution with minimal fluctuation.Keyword: project resource scheduling, fluctuation, resource leveling, PS

    Swarm Intelligence Optimization Algorithms and Their Application

    Get PDF
    Swarm intelligence optimization algorithm is an emerging technology tosimulate the evolution of the law of nature and acts of biological communities, it has simple and robust characteristics. The algorithm has been successfully applied in many fields. This paper summarizes the research status of swarm intelligence optimization algorithm and application progress. Elaborate the basic principle of ant colony algorithm and particle swarm algorithm. Carry out a detailed analysis of drosophila algorithm and firefly algorithm developed in recent years, and put forward deficiencies of each algorithm and direction for improvement

    Optimization of Agricultural Machinery Allocation in Heilongjiang Reclamation Area Based on Particle Swarm Optimization Algorithm

    Get PDF
    Aiming at the imbalance of seasonal agricultural machinery operations in different regions and the low efficiency of agricultural machinery, an experiment is proposed to use particle swarm algorithm to plan agricultural machinery paths to solve the current problems in agricultural machinery operations. Taking the harvesting of autumn soybeans at Jianshan Farm in Heilongjiang Reclamation Area as the experimental object, this paper constructs the optimization target model of the maximum net income of farm machinery households, and uses particle swarm algorithm to carry out agricultural machinery operation distribution and path planning gradually. In this paper, by introducing 0 - 1 mapping, the improved algorithm adopts continuous decision variables to solve the optimization of discrete variables in agricultural machinery operations. The test results show that the particle swarm algorithm can realize the optimal allocation of agricultural machinery path, and the particle swarm algorithm is scientific and explanatory to solve the agricultural machinery allocation problem. This research can provide a scientific basis for farm agricultural machinery allocation and decision analysis

    A new approach to particle swarm optimization algorithm

    Get PDF
    Particularly interesting group consists of algorithms that implement co-evolution or co-operation in natural environments, giving much more powerful implementations. The main aim is to obtain the algorithm which operation is not influenced by the environment. An unusual look at optimization algorithms made it possible to develop a new algorithm and its metaphors define for two groups of algorithms. These studies concern the particle swarm optimization algorithm as a model of predator and prey. New properties of the algorithm resulting from the co-operation mechanism that determines the operation of algorithm and significantly reduces environmental influence have been shown. Definitions of functions of behavior scenarios give new feature of the algorithm. This feature allows self controlling the optimization process. This approach can be successfully used in computer games. Properties of the new algorithm make it worth of interest, practical application and further research on its development. This study can be also an inspiration to search other solutions that implementing co-operation or co-evolution.Angeline, P. (1998). Using selection to improve particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation, Anchorage (pp. 84–89).Arquilla, J., & Ronfeldt, D. (2000). Swarming and the future of conflict, RAND National Defense Research Institute, Santa Monica, CA, US.Bessaou, M., & Siarry, P. (2001). A genetic algorithm with real-value coding to optimize multimodal continuous functions. Structural and Multidiscipline Optimization, 23, 63–74.Bird, S., & Li, X. (2006). Adaptively choosing niching parameters in a PSO. In Proceedings of the 2006 genetic and evolutionary computation conference (pp. 3–10).Bird, S., & Li, X. (2007). Using regression to improve local convergence. In Proceedings of the 2007 IEEE congress on evolutionary computation (pp. 592–599).Blackwell, T., & Bentley, P. (2002). Dont push me! Collision-avoiding swarms. In Proceedings of the IEEE congress on evolutionary computation, Honolulu (pp. 1691–1696).Brits, R., Engelbrecht, F., & van den Bergh, A. P. (2002). Solving systems of unconstrained equations using particle swarm optimization. In Proceedings of the 2002 IEEE conference on systems, man, and cybernetics (pp. 102–107).Brits, R., Engelbrecht, A., & van den Bergh, F. (2002). A niching particle swarm optimizer. In Proceedings of the fourth asia-pacific conference on simulated evolution and learning (pp. 692–696).Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics, 6(2), 191–213.Chelouah, R., & Siarry, P. (2000). Tabu search applied to global optimization. European Journal of Operational Research, 123, 256–270.Chelouah, R., & Siarry, P. (2003). Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima function. European Journal of Operational Research, 148(2), 335–348.Chelouah, R., & Siarry, P. (2005). A hybrid method combining continuous taboo search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions. European Journal of Operational Research, 161, 636–654.Chen, T., & Chi, T. (2010). On the improvements of the particle swarm optimization algorithm. Advances in Engineering Software, 41(2), 229–239.Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.Fan, H., & Shi, Y. (2001). Study on Vmax of particle swarm optimization. In Proceedings of the workshop particle swarm optimization, Indianapolis.Gao, H., & Xu, W. (2011). Particle swarm algorithm with hybrid mutation strategy. Applied Soft Computing, 11(8), 5129–5142.Gosciniak, I. (2008). Immune algorithm in non-stationary optimization task. In Proceedings of the 2008 international conference on computational intelligence for modelling control & automation, CIMCA ’08 (pp. 750–755). Washington, DC, USA: IEEE Computer Society.He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.Higashitani, M., Ishigame, A., & Yasuda, K., (2006). Particle swarm optimization considering the concept of predator–prey behavior. In 2006 IEEE congress on evolutionary computation (pp. 434–437).Higashitani, M., Ishigame, A., & Yasuda, K. (2008). Pursuit-escape particle swarm optimization. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 136–142.Hu, X., & Eberhart, R. (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the evolutionary computation on 2002. CEC ’02. Proceedings of the 2002 congress (Vol. 02, pp. 1677–1681). Washington, DC, USA: IEEE Computer Society.Hu, X., Eberhart, R., & Shi, Y. (2003). Engineering optimization with particle swarm. In IEEE swarm intelligence symposium, SIS 2003 (pp. 53–57). Indianapolis: IEEE Neural Networks Society.Jang, W., Kang, H., Lee, B., Kim, K., Shin, D., & Kim, S. (2007). Optimized fuzzy clustering by predator prey particle swarm optimization. In IEEE congress on evolutionary computation, CEC2007 (pp. 3232–3238).Kennedy, J. (2000). Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of the 2000 congress on evolutionary computation (pp. 1507–1512).Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In IEEE congress on evolutionary computation (pp. 1671–1676).Kuo, H., Chang, J., & Shyu, K. (2004). A hybrid algorithm of evolution and simplex methods applied to global optimization. Journal of Marine Science and Technology, 12(4), 280–289.Leontitsis, A., Kontogiorgos, D., & Pange, J. (2006). Repel the swarm to the optimum. Applied Mathematics and Computation, 173(1), 265–272.Li, X. (2004). Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization. In Proceedings of the 2004 genetic and evolutionary computation conference (pp. 105–116).Li, C., & Yang, S. (2009). A clustering particle swarm optimizer for dynamic optimization. In Proceedings of the 2009 congress on evolutionary computation (pp. 439–446).Liang, J., Suganthan, P., & Deb, K. (2005). Novel composition test functions for numerical global optimization. In Proceedings of the swarm intelligence symposium [Online]. Available: .Liang, J., Qin, A., Suganthan, P., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.Lovbjerg, M., & Krink, T. (2002). Extending particle swarm optimizers with self-organized criticality. In Proceedings of the congress on evolutionary computation, Honolulu (pp. 1588–1593).Lung, R., & Dumitrescu, D. (2007). A collaborative model for tracking optima in dynamic environments. In Proceedings of the 2007 congress on evolutionary computation (pp. 564–567).Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE Transaction on Evolutionary Computation, 8(3), 204–210.Miranda, V., & Fonseca, N. (2002). New evolutionary particle swarm algorithm (EPSO) applied to voltage/VAR control. In Proceedings of the 14th power systems computation conference, Seville, Spain [Online] Available: .Parrott, D., & Li, X. (2004). A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In Proceedings of the 2004 congress on evolutionary computation (pp. 98–103).Parrott, D., & Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. In IEEE transaction on evolutionary computation (Vol. 10, pp. 440–458).Parsopoulos, K., & Vrahatis, M. (2004). UPSOA unified particle swarm optimization scheme. Lecture Series on Computational Sciences, 868–873.Passaroand, A., & Starita, A. (2008). Particle swarm optimization for multimodal functions: A clustering approach. Journal of Artificial Evolution and Applications, 2008, 15 (Article ID 482032).Peram, T., Veeramachaneni, K., & Mohan, C. (2003). Fitness-distance-ratio based particle swarm optimization. In Swarm intelligence symp. (pp. 174–181).Sedighizadeh, D., & Masehian, E. (2009). Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5), 1793–8201.Shi, Y., & Eberhart, R. (2001). Particle swarm optimization with fuzzy adaptive inertia weight. In Proceedings of the workshop particle swarm optimization, Indianapolis (pp. 101–106).Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of IEEE International Conference on Evolutionary Computation (pp. 69–73). Washington, DC, USA: IEEE Computer Society.Thomsen, R. (2004). Multimodal optimization using crowding-based differential evolution. In Proceedings of the 2004 congress on evolutionary computation (pp. 1382–1389).Trojanowski, K., & Wierzchoń, S. (2009). Immune-based algorithms for dynamic optimization. Information Sciences, 179(10), 1495–1515.Tsoulos, I., & Stavrakoudis, A. (2010). Enhancing PSO methods for global optimization. Applied Mathematics and Computation, 216(10), 2988–3001.van den Bergh, F., & Engelbrecht, A. (2004). A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 225–239.Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1(1), 67–82.Xie, X., Zhang, W., & Yang, Z. (2002). Dissipative particle swarm optimization. In Proceedings of the congress on evolutionary computation (pp. 1456–1461).Yang, S., & Li, C. (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. In IEEE Trans. on evolutionary computation (Vol. 14, pp. 959–974).Kuo, H., Chang, J., & Liu, C. (2006). Particle swarm optimization for global optimization problems. Journal of Marine Science and Technology, 14(3), 170–181

    Diminution of Real Power Loss by Hybridization of Particle Swarm Optimization with Extremal Optimization

    Get PDF
    This paper presents an algorithm for solving the multi-objective reactive power dispatch problem in a power system. Modal analysis of the system is used for static voltage stability assessment. Loss minimization and maximization of voltage stability margin are taken as the objectives. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer setting are taken as the optimization variables. Particle swarm optimization (PSO) has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, PSO has premature convergence, especially in complex multimodal functions. Extremal Optimization (EO) is a recently developed local-search heuristic method and has been successfully applied to a wide variety of hard optimization problems. To overcome the limitation of PSO, this paper proposes a novel hybrid algorithm, called hybrid PSO-EO algorithm, through introducing EO to PSO. The hybrid approach elegantly combines the exploration ability of PSO with the exploitation ability of EO. The proposed approach is shown to have superior performance and great capability of preventing pre- mature convergence across it comparing favourably with the other algorithms. We demonstrated that our proposed HPSOEO (hybrid particle swarm optimization – Extremal optimization) presents a better performance when compared to the other algorithms. In order to evaluate the proposed algorithm, it has been tested on IEEE 30 bus system and compared to other algorithms reported those before in literature. Results show that HPSOEO is more efficient than others for solution of single-objective Optimal Reactive Power Dispatch problem. Keywords: Modal analysis, optimal reactive power, Transmission loss, particle swarm, Particle swarm optimization, Extremal optimization, Numerical optimization, Metaheuristic

    Economic and Emission Dispatch using Whale Optimization Algorithm (WOA)

    Get PDF
    This paper work present one of the latest meta heuristic optimization approaches named whale optimization algorithm as a new algorithm developed to solve the economic dispatch problem. The execution of the utilized algorithm is analyzed using standard test system of IEEE 30 bus system. The proposed algorithm delivered optimum or near optimum solutions. Fuel cost and emission costs are considered together to get better result for economic dispatch. The analysis shows good convergence property for WOA and provides better results in comparison with PSO. The achieved results in this study using the above-mentioned algorithm have been compared with obtained results using other intelligent methods such as particle swarm Optimization. The overall performance of this algorithm collates with early proven optimization methodology, Particle Swarm Optimization (PSO). The minimum cost for the generation of units is obtained for the standard bus system

    Optimization of PID Controller Based on PSOGSA for an Automatic Voltage Regulator System

    Get PDF
    AbstractThis paper presents an optimal Proportional Integral Derivate (PID) controller design for an Automatic Voltage Regulator (AVR) system using a new hybrid devised from the Particle Swarm Optimization and the Gravitational Search Algorithm (PSOGSA). The transient response analysis and bode analysis were considered to show the effectiveness of the design technique. Moreover, the comparison of the results between the proposed approach and other techniques such as the Ziegler-Nichols (ZN) tuning method, the Particle Swarm Optimization (PSO) tuning method and the Many Optimizing Liaisons (MOL) tuning method have been given. According to the analysis, the proposed PSOGSA algorithm gives better results than other techniques for the AVR system

    Dual Target Optimization of Two-Dimensional Truss Using Cost Efficiency and Structural Reliability Sufficiency

    Get PDF
    The main contribution of this study is to open a discussion regarding the structural optimization associated with the cost efficiency and structural reliability sufficiency consideration. To do so, several various optimization approaches are investigated to deliberate both cost and reliability concerns. Particularly, particle swarm optimization is highlighted as a reliable optimization approach. Accordingly, an illustrative example is rendered to compare the feasibility of the considered optimization approaches. The feasibility of the investigated approaches is evaluated using the cost and reliability analysis. For the considered example, it was observed that the PSO optimization algorithm has multiple advantages such as easy realization, fast convergence, and promising performance in nonlinear performance optimization. The PSO optimization algorithm can be successfully applied in various fields of civil engineering. This popularity is due to the understandable performance of the PSO as well as its simplicity. In this paper, first, the literature on the subject has been described by two-dimensional truss analysis using the finite element method and optimized using the PSO particle swarm algorithm. A comparison of the results with this reference indicates the accuracy of this particle swarm algorithm in truss optimization. Indeed, this study ignites two main insights in structural optimizations assessment. The first illustration is related to how to establish a framework for structural system reliability analysis associated with the different degrees of indeterminacies. And the second illustration is related to making a decision problem concerning the structural optimization while both cost and reliability metric are two main parameters for the construction point of the view
    • …
    corecore