961 research outputs found

    Smart industrial IoT monitoring and control system based on UAV and cloud computing applied to a concrete plant

    Get PDF
    Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.The authors would like to thank the Seneca Foundation as also FRUMECAR S.L., for their support and the opportunity to implement and test the proposed approach on their facilities. This work was partially supported by FRUMECAR S.L. and Seneca Foundation's "Murcia Regional Scientific Excellence Research Program" (Murcia Science and Technology Agency-19895/GERM/15)

    A cyber-physical machine tools platform using OPC UA and MTConnect

    Get PDF
    Cyber-Physical Machine Tools (CPMT) represent a new generation of machine tools that are smarter, well connected, widely accessible, more adaptive and more autonomous. Development of CPMT requires standardized information modelling method and communication protocols for machine tools. This paper proposes a CPMT Platform based on OPC UA and MTConnect that enables standardized, interoperable and efficient data communication among machine tools and various types of software applications. First, a development method for OPC UA-based CPMT is proposed based on a generic OPC UA information model for CNC machine tools. Second, to address the issue of interoperability between OPC UA and MTConnect, an MTConnect to OPC UA interface is developed to transform MTConnect information model and its data to their OPC UA counterparts. An OPC UA-based CPMT prototype is developed and further integrated with a previously developed MTConnect-based CPMT to establish a common CPMT Platform. Third, different applications are developed to demonstrate the advantages of the proposed CPMT Platform, including an OPC UA Client, an advanced AR-assisted wearable Human-Machine Interface and a conceptual framework for CPMT powered cloud manufacturing environment. Experimental results have proven that the proposed CPMT Platform can significantly improve the overall production efficiency and effectiveness in the shop floor

    Practical Open-Loop Optimistic Planning

    Get PDF
    We consider the problem of online planning in a Markov Decision Process when given only access to a generative model, restricted to open-loop policies - i.e. sequences of actions - and under budget constraint. In this setting, the Open-Loop Optimistic Planning (OLOP) algorithm enjoys good theoretical guarantees but is overly conservative in practice, as we show in numerical experiments. We propose a modified version of the algorithm with tighter upper-confidence bounds, KLOLOP, that leads to better practical performances while retaining the sample complexity bound. Finally, we propose an efficient implementation that significantly improves the time complexity of both algorithms

    A new method for motion synchronization among multivendor’s programmable controllers

    Get PDF
    This paper is aimed at increasing the number of possible architectures of distributed control systems by investigating and developing novel methods for the synchronization of axes between PLCs and iPCs of different vendors. In order to find a global solution to this problem, particular attention has been focused on programmable controllers that can manage axes by means of point-by-point control or motion instructions. Two synchronization algorithms have been developed and validated for real and virtual axes; they differ in computational load so that they can be used with programmable controllers having high or low computational performances

    Observing the sky at extremely high energies with the Cherenkov Telescope Array: Status of the GCT project

    Get PDF
    The Cherenkov Telescope Array is the main global project of ground-based gamma-ray astronomy for the coming decades. Performance will be significantly improved relative to present instruments, allowing a new insight into the high-energy Universe [1]. The nominal CTA southern array will include a sub-array of seventy 4 m telescopes spread over a few square kilometers to study the sky at extremely high energies, with the opening of a new window in the multi-TeV energy range. The Gamma-ray Cherenkov Telescope (GCT) is one of the proposed telescope designs for that sub-array. The GCT prototype recorded its first Cherenkov light on sky in 2015. After an assessment phase in 2016, new observations have been performed successfully in 2017. The GCT collaboration plans to install its first telescopes and cameras on the CTA site in Chile in 2018-2019 and to contribute a number of telescopes to the subsequent CTA production phase.Comment: 8 pages, 7 figures, ICRC201

    Interoperability between OPC UA and oneM2M

    Get PDF
    AbstractA key requirement of realizing the connected world featured by IoT is to ensure interoperability among different connected devices. Interoperability is also at the basis of the realization of the novel vision of Industry 4.0; a lot effort is put to make interoperable the interchange of information between industrial applications, also including IoT ecosystems. For this reason, during these last years, several approaches aimed to enhance interoperability between industrial applications and IoT appeared in the literature. In this paper an interoperability proposal is presented. It is based on the idea to realize interworking between the two standards considered among the reference ones in the industrial and IoT domains. They are the OPC UA for the industrial domain and oneM2M for the IoT. Interworking is realized in such a way to allow industrial applications based on OPC UA to acquire information coming from oneM2M-based IoT devices. The proposal allows an OPC UA Server to publish each piece of information produced by oneM2M-based IoT devices, so that this information may be consumed by industrial applications playing the OPC UA Client role

    A modern teaching environment for process automation

    Get PDF
    Emergence of the new technological trends such as Open Platform Communications Unified Architecture (OPC UA), Industrial Ethernet, cloud computing and the 5th wireless network (5G) enabled the implementation of Cyber-physical System (CPS) with flexible, configurable, scalable and interoperable business models. This provides new opportunities for the process automation systems. On the other hand, the constant urge of industries for cost and material efficient processes demands a new automation paradigm with the latest tools and technologies which should be taken into account while teaching future automation engineers. In this thesis, the modern teaching environment for process automation is designed, implemented and described. This work explains the connections, configurations and the test of three mini plants including the Multiple Heat Exchanger, the Three-tank system and the Mixing Tank. In addition, OPC UA communication between the server and its clients has been tested. The plants are a part of the state of the art of the architecture that provides the access of ABB 800xA to the cloud services via OPC UA over the 5G test wireless network. This new paradigm changes the old automation hierarchy and enables the cross layered communication in the old architecture. This modern teaching environment prepares the students for the future automation challenges with the latest tools and merges data analytics, cloud computing and wireless network studies with process automation. It also provides the unique chance of testing the future trends together in this unique process automation setup
    • …
    corecore