6,094 research outputs found

    A COMPARISON OF EXTENDED SOURCE-FILTER MODELS FOR MUSICAL SIGNAL RECONSTRUCTION

    Get PDF
    China Scholarship Council (CSC)/ Queen Mary Joint PhD scholarship; Royal Academy of Engineering Research Fellowshi

    A temporally-constrained convolutive probabilistic model for pitch detection

    Get PDF
    A method for pitch detection which models the temporal evolution of musical sounds is presented in this paper. The proposed model is based on shift-invariant probabilistic latent component analysis, constrained by a hidden Markov model. The time-frequency representation of a produced musical note can be expressed by the model as a temporal sequence of spectral templates which can also be shifted over log-frequency. Thus, this approach can be effectively used for pitch detection in music signals that contain amplitude and frequency modulations. Experiments were performed using extracted sequences of spectral templates on monophonic music excerpts, where the proposed model outperforms a non-temporally constrained convolutive model for pitch detection. Finally, future directions are given for multipitch extensions of the proposed model

    Comparison of input devices in an ISEE direct timbre manipulation task

    Get PDF
    The representation and manipulation of sound within multimedia systems is an important and currently under-researched area. The paper gives an overview of the authors' work on the direct manipulation of audio information, and describes a solution based upon the navigation of four-dimensional scaled timbre spaces. Three hardware input devices were experimentally evaluated for use in a timbre space navigation task: the Apple Standard Mouse, Gravis Advanced Mousestick II joystick (absolute and relative) and the Nintendo Power Glove. Results show that the usability of these devices significantly affected the efficacy of the system, and that conventional low-cost, low-dimensional devices provided better performance than the low-cost, multidimensional dataglove

    Modelling Methods for the Highly Dispersive Slinky Spring: A Novel Musical Toy

    Get PDF
    ABSTRACT The 'Slinky' spring is a popular and beloved toy for many children. Like its smaller relatives, used in spring reverberation units, it can produce interesting sonic behaviors. We explore the behavior of the 'Slinky' spring via measurement, and discover that its sonic characteristics are notably different to those of smaller springs. We discuss methods of modeling the behavior of a Slinky via the use of finite-difference techniques and digital waveguides. We then apply these models in different structures to build a number of interesting tools for computer-based music production

    TimbreTron: A WaveNet(CycleGAN(CQT(Audio))) Pipeline for Musical Timbre Transfer

    Full text link
    In this work, we address the problem of musical timbre transfer, where the goal is to manipulate the timbre of a sound sample from one instrument to match another instrument while preserving other musical content, such as pitch, rhythm, and loudness. In principle, one could apply image-based style transfer techniques to a time-frequency representation of an audio signal, but this depends on having a representation that allows independent manipulation of timbre as well as high-quality waveform generation. We introduce TimbreTron, a method for musical timbre transfer which applies "image" domain style transfer to a time-frequency representation of the audio signal, and then produces a high-quality waveform using a conditional WaveNet synthesizer. We show that the Constant Q Transform (CQT) representation is particularly well-suited to convolutional architectures due to its approximate pitch equivariance. Based on human perceptual evaluations, we confirmed that TimbreTron recognizably transferred the timbre while otherwise preserving the musical content, for both monophonic and polyphonic samples.Comment: 17 pages, published as a conference paper at ICLR 201

    Multiple-F0 estimation of piano sounds exploiting spectral structure and temporal evolution

    Get PDF
    This paper proposes a system for multiple fundamental frequency estimation of piano sounds using pitch candidate selection rules which employ spectral structure and temporal evolution. As a time-frequency representation, the Resonator Time-Frequency Image of the input signal is employed, a noise suppression model is used, and a spectral whitening procedure is performed. In addition, a spectral flux-based onset detector is employed in order to select the steady-state region of the produced sound. In the multiple-F0 estimation stage, tuning and inharmonicity parameters are extracted and a pitch salience function is proposed. Pitch presence tests are performed utilizing information from the spectral structure of pitch candidates, aiming to suppress errors occurring at multiples and sub-multiples of the true pitches. A novel feature for the estimation of harmonically related pitches is proposed, based on the common amplitude modulation assumption. Experiments are performed on the MAPS database using 8784 piano samples of classical, jazz, and random chords with polyphony levels between 1 and 6. The proposed system is computationally inexpensive, being able to perform multiple-F0 estimation experiments in realtime. Experimental results indicate that the proposed system outperforms state-of-the-art approaches for the aforementioned task in a statistically significant manner. Index Terms: multiple-F0 estimation, resonator timefrequency image, common amplitude modulatio
    corecore