104,299 research outputs found

    Performance Analysis of Adaptive Rate Scheduling Scheme for 3G WCDMA Wireless Networks with Multi-Operators

    Get PDF
    Sharing of 3G network infrastructure among operators offers an alternative solution to reducing the investment in the coverage phase of WCDMA. For radio access network (RAN) sharing method each operator has its own core network and only the RAN is shared. Without an efficient RRM, one operator can exhausts the capacity of others. This paper proposes and analyzes an efficient uplink-scheduling scheme in case of RAN sharing method. We refer to this new scheme as Multi-operators Code Division Generalized Processor sharing scheme (M-CDGPS). It employs both adaptive rate allocation to maximize the resource utilization and GPS techniques to provide fair services for each operator. The performance analysis of this scheme is derived using the GPS performance model. Also, it is compared with static rate M-CDGPS scheme. Numerical and simulation results show that the proposed adaptive rate MCDGPS scheduling scheme improves both system throughput and average delays

    Performance Analysis of Adaptive Rate Scheduling Scheme for 3G WCDMA Wireless Networks with Multi-Operators

    Get PDF
    Sharing of 3G network infrastructure among operators offers an alternative solution to reducing the investment in the coverage phase of WCDMA. For radio access network (RAN) sharing method each operator has its own core network and only the RAN is shared. Without an efficient RRM, one operator can exhausts the capacity of others. This paper proposes and analyzes an efficient uplink-scheduling scheme in case of RAN sharing method. We refer to this new scheme as Multi-operators Code Division Generalized Processor sharing scheme (M-CDGPS). It employs both adaptive rate allocation to maximize the resource utilization and GPS techniques to provide fair services for each operator. The performance analysis of this scheme is derived using the GPS performance model. Also, it is compared with static rate M-CDGPS scheme. Numerical and simulation results show that the proposed adaptive rate MCDGPS scheduling scheme improves both system throughput and average delays

    Insights in the cost of continuous broadband Internet on trains for multi-service deployments by multiple actors with resource sharing

    Get PDF
    The economic viability of broadband Internet services on trains has always been proved difficult, mainly due to a high investment cost and low willingness to pay by train passengers, but also due to unused opportunities such as non-passenger services (e.g. train performance monitoring, crew services) and optimization of the resources consumed to offer Internet services. Evaluating opportunities to improve the return on investment is therefore essential towards profitability of the business case. By efficiently sharing resources amongst services, costs can be pooled over several services in order to reduce the investment cost per service. Current techno-economic evaluation models are hard to apply to cost allocation in a multi-service deployment with multiple actors and resource sharing. We therefore propose a new evaluation model and apply it to a deployment of Internet services on trains. We start with a detailed analysis of the technical architecture required to provide Internet access on trains. For each component, we investigate the impact by the different services on resource consumption. The proposed techno-economic evaluation model is then applied in order to calculate the total cost and allocate the used and unused resources to the appropriate services. In a final step, we calculate the business case for each stakeholder involved in the offering of these services. This paper details the proposed model and reports on our findings for a multi-service deployment by multiple actors. Results show important benefits for the case that considers the application of resource sharing in a multi-service, multi-actor scenario and the proposed model produces insights in the contributors to the cost per service and the unused amount of a resource. In addition, ex-ante insights in the cost flows per involved actor are obtained and the model can easily be extended to include revenue flows to evaluate the profitability per actor. As a consequence, the proposed model should be considered to support and stimulate upcoming multi-actor investment decisions for Internet-based multi-service offerings on-board trains with resource sharing

    Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming

    Full text link
    This paper investigates the extent to which spectrum sharing in mmWave networks with multiple cellular operators is a viable alternative to traditional dedicated spectrum allocation. Specifically, we develop a general mathematical framework by which to characterize the performance gain that can be obtained when spectrum sharing is used, as a function of the underlying beamforming, operator coordination, bandwidth, and infrastructure sharing scenarios. The framework is based on joint beamforming and cell association optimization, with the objective of maximizing the long-term throughput of the users. Our asymptotic and non-asymptotic performance analyses reveal five key points: (1) spectrum sharing with light on-demand intra- and inter-operator coordination is feasible, especially at higher mmWave frequencies (for example, 73 GHz), (2) directional communications at the user equipment substantially alleviate the potential disadvantages of spectrum sharing (such as higher multiuser interference), (3) large numbers of antenna elements can reduce the need for coordination and simplify the implementation of spectrum sharing, (4) while inter-operator coordination can be neglected in the large-antenna regime, intra-operator coordination can still bring gains by balancing the network load, and (5) critical control signals among base stations, operators, and user equipment should be protected from the adverse effects of spectrum sharing, for example by means of exclusive resource allocation. The results of this paper, and their extensions obtained by relaxing some ideal assumptions, can provide important insights for future standardization and spectrum policy.Comment: 15 pages. To appear in IEEE JSAC Special Issue on Spectrum Sharing and Aggregation for Future Wireless Network

    Scalable RAN Virtualization in Multi-Tenant LTE-A Heterogeneous Networks (Extended version)

    Full text link
    Cellular communications are evolving to facilitate the current and expected increasing needs of Quality of Service (QoS), high data rates and diversity of offered services. Towards this direction, Radio Access Network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, suitable for application in Heterogeneous Networks (HetNets) in Long Term Evolution-Advanced (LTE-A) environments, consisting of a macro evolved NodeB (eNB) overlaid with small cells. By exploiting Radio Resource Management (RRM) principles, RENEV achieves slicing and on demand delivery of resources. Leveraging the multi-tenancy approach, radio resources are transferred in terms of physical radio Resource Blocks (RBs) among multiple heterogeneous base stations, interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third Generation Partnership Project (3GPP) LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of network's throughput as well as its additional signaling overhead. Moreover we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant merits are achieved both from network's and users' perspective as well as that it is a scalable solution for different number of small cells.Comment: 40 pages (including Appendices), Accepted for publication in the IEEE Transactions on Vehicular Technolog

    Modeling Profit of Sliced 5G Networks for Advanced Network Resource Management and Slice Implementation

    Full text link
    The core innovation in future 5G cellular networksnetwork slicing, aims at providing a flexible and efficient framework of network organization and resource management. The revolutionary network architecture based on slices, makes most of the current network cost models obsolete, as they estimate the expenditures in a static manner. In this paper, a novel methodology is proposed, in which a value chain in sliced networks is presented. Based on the proposed value chain, the profits generated by different slices are analyzed, and the task of network resource management is modeled as a multiobjective optimization problem. Setting strong assumptions, this optimization problem is analyzed starting from a simple ideal scenario. By removing the assumptions step-by-step, realistic but complex use cases are approached. Through this progressive analysis, technical challenges in slice implementation and network optimization are investigated under different scenarios. For each challenge, some potentially available solutions are suggested, and likely applications are also discussed
    corecore