9,258 research outputs found

    Analysis of Modulated Multivariate Oscillations

    Full text link
    The concept of a common modulated oscillation spanning multiple time series is formalized, a method for the recovery of such a signal from potentially noisy observations is proposed, and the time-varying bias properties of the recovery method are derived. The method, an extension of wavelet ridge analysis to the multivariate case, identifies the common oscillation by seeking, at each point in time, a frequency for which a bandpassed version of the signal obtains a local maximum in power. The lowest-order bias is shown to involve a quantity, termed the instantaneous curvature, which measures the strength of local quadratic modulation of the signal after demodulation by the common oscillation frequency. The bias can be made to be small if the analysis filter, or wavelet, can be chosen such that the signal's instantaneous curvature changes little over the filter time scale. An application is presented to the detection of vortex motions in a set of freely-drifting oceanographic instruments tracking the ocean currents

    Modulated Oscillations in Three Dimensions

    Full text link
    The analysis of the fully three-dimensional and time-varying polarization characteristics of a modulated trivariate, or three-component, oscillation is addressed. The use of the analytic operator enables the instantaneous three-dimensional polarization state of any square-integrable trivariate signal to be uniquely defined. Straightforward expressions are given which permit the ellipse parameters to be recovered from data. The notions of instantaneous frequency and instantaneous bandwidth, generalized to the trivariate case, are related to variations in the ellipse properties. Rates of change of the ellipse parameters are found to be intimately linked to the first few moments of the signal's spectrum, averaged over the three signal components. In particular, the trivariate instantaneous bandwidth---a measure of the instantaneous departure of the signal from a single pure sinusoidal oscillation---is found to contain five contributions: three essentially two-dimensional effects due to the motion of the ellipse within a fixed plane, and two effects due to the motion of the plane containing the ellipse. The resulting analysis method is an informative means of describing nonstationary trivariate signals, as is illustrated with an application to a seismic record.Comment: IEEE Transactions on Signal Processing, 201

    EEG theta and Mu oscillations during perception of human and robot actions.

    Get PDF
    The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other

    Dynamic Decomposition of Spatiotemporal Neural Signals

    Full text link
    Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals

    Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes

    Get PDF
    Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone

    Analysis of Dynamic Brain Imaging Data

    Get PDF
    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for non-stationarity in the data. Of particular note are (a) the development of a decomposition technique (`space-frequency singular value decomposition') that is shown to be a useful means of characterizing the image data, and (b) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources.Comment: 40 pages; 26 figures with subparts including 3 figures as .gif files. Originally submitted to the neuro-sys archive which was never publicly announced (was 9804003
    • …
    corecore