66 research outputs found

    Amplify-and-Forward Relaying With Maximal Ratio Combining Over Fluctuating Two-Ray Channel:Non-Asymptotic and Asymptotic Performance Analysis

    Get PDF
    Fluctuating two-ray (FTR) channel model was shown to effectively characterize millimeter wave (mmWave) communication channels. In this article, we adopt FTR to investigate amplify-and-Forward (AF) mmWave relaying system. Two communications scenarios are considered corresponding to the presence and absence of a direct link between the transmitter and receiver. Outage probability and symbol error rate (SER) are then analytically obtained as performance metrics. The results are further compared with the corresponding metrics obtained based on conventional channel models including Nakagami- m and two-wave with diffuse power (TWDP). Especially, for the high-SNR regime, our analyses indicate that performance evaluations based on the conventional models significantly deviate from that of based on the FTR model. Our results provide quantitative insights on the importance of model selection in design and performance evaluations of relay-based mmWave systems. Moreover, for the high-SNR regime, we carry out asymptotic analysis and obtain a low-complexity expression for the achieved AF relaying gain. Such an expression provides a quantitative measure on whether or not AF relaying outperforms no-relaying in a given setting. Extensive numerical and simulation results are provided to confirm the accuracy of the analysis and investigate system performance in different settings

    Integrated Access and Backhaul in Millimeter-Wave Cellular : Benefits and Challenges

    Get PDF
    The recently proposed NR-ready integrated access and backhaul (IAB) architecture promises to bring a cost-efficient deployment solution for both coverage extension and capacity boosting in the emerging 5G/5G+ systems. While its impact on the coverage extension was thoroughly addressed in the literature, the effect of advanced functionalities such as multihop, multi-connectivity, and multi-beam operations on the throughput remained unclear. We review and characterize the system-level impact of these capabilities on the performance of self-backhauled IAB systems operating in half-duplex mode and utilizing millimeter-wave (mmWave) technology across both access and backhaul. Our results indicate that the throughput gain of multihopping and multi-beaming is significant even without multi-connectivity operation. Another important lesson is that in all-mmWave systems with link blockage, multi-connectivity with link switching allows achieving self-load balancing. Finally, we outline future research directions.acceptedVersionPeer reviewe

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Deep-Learning-Based Intelligent Intervehicle Distance Control for 6G-Enabled Cooperative Autonomous Driving

    Get PDF
    Research on the sixth-generation cellular networks (6G) is gaining huge momentum to achieve ubiquitous wireless connectivity. Connected autonomous vehicles (CAVs) is a critical vertical application for 6G, holding great potentials of improving road safety, road and energy efficiency. However, the stringent service requirements of CAV applications on reliability, latency, and high speed communications will present big challenges to 6G networks. New channel access algorithms and intelligent control schemes for connected vehicles are needed for 6G-supported CAV. In this article, we investigated 6G-supported cooperative driving, which is an advanced driving mode through information sharing and driving coordination. First, we quantify the delay upper bounds of 6G vehicle-to-vehicle (V2V) communications with hybrid communication and channel access technologies. A deep learning neural network is developed and trained for the fast computation of the delay bounds in real-time operations. Then, an intelligent strategy is designed to control the intervehicle distance for cooperative autonomous driving. Furthermore, we propose a Markov chain-based algorithm to predict the parameters of the system states, and also a safe distance mapping method to enable smooth vehicular speed changes. The proposed algorithms are implemented in the AirSim autonomous driving platform. Simulation results show that the proposed algorithms are effective and robust with safe and stable cooperative autonomous driving, which greatly improve the road safety, capacity, and efficiency

    Energy E fficiency Oriented Full Duplex Wireless Communication Systems

    Get PDF
    Full-duplex (FD) transmission is a promising technique for fifth generation (5G) wireless communications, enabling significant spectral efficiency (SE) improvement over existing half-duplex (HD) systems. However, FD transmission consumes higher power than HD transmission, especially for millimetre wave band. Therefore, energy efficiency (EE) for FD systems is a critical yet inadequately addressed issue. This thesis addresses the critical EE challenges and demonstrates promising solutions for implementing FD systems, as detailed in the following contributions. In the first contribution, a comprehensive EE analysis of the FD and HD amplify-and-forward (AF) relay-assisted 60 GHz dual-hop indoor wireless systems is presented. An opportunistic relay mode selection scheme is developed, where FD relay with different self-interference (SIC) techniques or HD relay is opportunistically selected. Together with transmission power adaptation, EE is maximised with given channel gains. A counter-intuitive finding is shown that, with a relatively loose maximum transmission power constraint, FD relay with two-stage SIC is preferable to both FD relay with one-stage SIC and HD relay, resulting in a higher optimised EE. A full range of power consumption sources are considered to rationalise the analysis. The effects of imperfect SIC at relay, drain efficiency and static circuit power on EE are investigated. Simulation results verify the theoretical analysis. In the second contribution, EE oriented resource allocation for FD decode-of-forward (DF) relay-assisted 60 GHz multiuser systems is investigated. In contrast to the existing SE oriented designs, the proposed scheme maximises EE for FD relay systems under cross-layer constraints, addressing the typical problems at 60 GHz. A low-complexity EE-orientated resource allocation algorithm is proposed, by which the transmission power allocation, subcarrier allocation and throughput assignment are performed jointly across multiple users. Simulation results verify the analytical results and confirm that the FD relay systems with the proposed algorithm achieve a higher EE than the FD relay systems with SE oriented approaches, while offering a comparable SE. In addition, a much lower throughput outage probability is guaranteed by the proposed resource allocation algorithm, showing its robustness against channel estimation errors. In the third contribution, it is noticed that in wireless power transfer (WPT)-aided relay systems, the SE of the source-relay link plays a dominant role in the system SE due to limited transmission power at the WPT-aided relay. A novel asymmetric protocol for WPT-aided FD DF relay systems is proposed in multiuser scenario, where the time slot durations of the two hops are designed to be uneven, to enhance the degree of freedom and hence the system SE. A corresponding dynamic resource allocation algorithm is developed by jointly optimising the time slot durations, subcarriers and transmission power at the source and the relay. Simulation results con rm that, compared to the symmetric WPT-aided FD relay (Sym-WPT-FR) and the time-switching based WPT-aided FD relay (TS-WPT-FR) systems in the literature, the proposed asymmetric WPT-aided FD relay system achieves up to twice the SE and higher robustness against the relay's location and the number of users. In the final contribution, to strike the balance between high SE and low power consumption, a hybrid duplexing strategy is developed for distributed antennas (DAs) systems, where antennas are capable of working in hybrid FD, HD, and sleeping modes. To maximise the system EE with low complexity, activation/deactivation of transmit/receive chain is first performed, by a proposed channel-gain-based DA clustering algorithm, which highlights the characteristics of distributed deployment of antennas. Based on the DAs' con figuration, a novel distributed hybrid duplexing (D-HD)-based and EE oriented algorithm is proposed to further optimise the downlink beamformer and the uplink transmission power. To rationalise the system model, self-interference at DAs, co-channel interference from uplink users to downlink users, and multiuser interference in both uplink and downlink are taken into account. Simulation results confirm that the proposed system provides significant EE and SE enhancements over the colocated FD MIMO system, showing the advantages in alleviating high path loss as well as in cutting the carbon footprint. Compared to the sole-FD DA system, the proposed system shows much higher EE with marginal loss in SE. Also, the SIC operation in the proposed system is much more simplified compared to the two benchmarks
    corecore