13 research outputs found

    Natural freehand grasping of virtual objects for augmented reality

    Get PDF
    Grasping is a primary form of interaction with the surrounding world, and is an intuitive interaction technique by nature due to the highly complex structure of the human hand. Translating this versatile interaction technique to Augmented Reality (AR) can provide interaction designers with more opportunities to implement more intuitive and realistic AR applications. The work presented in this thesis uses quantifiable measures to evaluate the accuracy and usability of natural grasping of virtual objects in AR environments, and presents methods for improving this natural form of interaction. Following a review of physical grasping parameters and current methods of mediating grasping interactions in AR, a comprehensive analysis of natural freehand grasping of virtual objects in AR is presented to assess the accuracy, usability and transferability of this natural form of grasping to AR environments. The analysis is presented in four independent user studies (120 participants, 30 participants for each study and 5760 grasping tasks in total), where natural freehand grasping performance is assessed for a range of virtual object sizes, positions and types in terms of accuracy of grasping, task completion time and overall system usability. Findings from the first user study in this work highlighted two key problems for natural grasping in AR; namely inaccurate depth estimation and inaccurate size estimation of virtual objects. Following the quantification of these errors, three different methods for mitigating user errors and assisting users during natural grasping were presented and analysed; namely dual view visual feedback, drop shadows and additional visual feedback when adding user based tolerances during interaction tasks. Dual view visual feedback was found to significantly improve user depth estimation, however this method also significantly increased task completion time. Drop shadows provided an alternative, and a more usable solution, to dual view visual feedback through significantly improving depth estimation, task completion time and the overall usability of natural grasping. User based tolerances negated the fundamental problem of inaccurate size estimation of virtual objects, through enabling users to perform natural grasping without the need of being highly accurate in their grasping performance, thus providing evidence that natural grasping can be usable in task based AR environments. Finally recommendations for allowing and further improving natural grasping interaction in AR environments are provided, along with guidelines for translating this form of natural grasping to other AR environments and user interfaces

    Evaluation of Drop Shadows for Virtual Object Grasping in Augmented Reality

    Get PDF
    This paper presents the use of rendered visual cues as drop shadows and their impact on overall usability and accuracy of grasping interactions for monitor-based exocentric Augmented Reality (AR). We report on two conditions; grasping with drop shadows and without drop shadows and analyse a total of 1620 grasps of two virtual object types (cubes and spheres). We report on the accuracy of one grasp type, the Medium Wrap grasp, against Grasp Aperture (GAp), Grasp Displacement (GDisp), completion time and usability metrics from 30 participants. A comprehensive statistical analysis of the results is presented giving comparisons of the inclusion of drop shadows in AR grasping. Findings showed that the use of drop shadows increases usability of AR grasping while significantly decreasing task completion times. Furthermore, drop shadows also significantly improve user’s depth estimation of AR object position. However, this study also shows that using drop shadows does not improve user’s object size estimation, which remains as a problematic element in grasping AR interaction literature

    Freehand Grasping: An Analysis of Grasping for Docking Tasks in Virtual Reality

    Get PDF
    Natural and intuitive interaction in VR as grasping virtual objects, is still a significant challenge and while recent studies have begun to explore interactions that aim to seamlessly create virtual environments that mimic reality as closely as possible, the dexterous versatility of the human grasp poses significant challenges for usable and intuitive interactions. At present the design considerations for creating natural grasping based interactions in VR are usually drawn from the body of historical knowledge presented for real object grasping. While this may be suitable for some applications, recent work has shown that users in VR grasp virtual objects differently than they would grasp real objects. Therefore, these interaction assumptions may not be directly applicable in furthering the natural interface for users of VR, presenting an absence of knowledge on how users intuitively grasp virtual objects. To begin to address this, we present two experiments where participants (N=39) grasped 16 virtual objects categorised by shape in a mixed docking task exploring rotation, placement and target location. We report on a Wizard of Oz methodology and extract grasp types, grasp category and grasp dimension. We further provide insights into virtual object categorisation for assessing interaction patterns and how these could be used for developing natural and intuitive grasp models by parameterizing grasp types found in these experiments. Our results are of value to be taken forward into a framework of recommendations for grasping interactions and thus begin to bridge the gap in understanding natural grasping patters for VR object interactions

    Head Mounted Display Interaction Evaluation: Manipulating Virtual Objects in Augmented Reality

    Get PDF
    Augmented Reality (AR) is getting close to real use cases,which is driving the creation of innovative applications and the unprecedented growth of Head-Mounted Display (HMD) devices in consumer availability. However, at present there is a lack of guidelines, common form factors and standard interaction paradigms between devices, which has resulted in each HMD manufacturer creating their own specifications. This paper presents the first experimental evaluation of two AR HMDs evaluating their interaction paradigms, namely we used the HoloLens v1 (metaphoric interaction) and Meta2 (isomorphic interaction). We report on precision, interactivity and usability metrics in an object manipulation task-based user study. 20 participants took part in this study and significant differences were found between interaction paradigms of the devices for move tasks, where the isomorphic mapped interaction outperformed the metaphoric mapped interaction in both time to completion and accuracy, while the contrary was found for the resize task. From an interaction perspective, the isomorphic mapped interaction (using the Meta2) was perceived as more natural and usable with a significantly higher usability score and a significantly lower task-load index. However, when task accuracy and time to completion is key mixed interaction paradigms need to be considered

    A Taxonomy of Freehand Grasping Patterns in Virtual Reality

    Get PDF
    Grasping is the most natural and primary interaction paradigm people perform every day, which allows us to pick up and manipulate objects around us such as drinking a cup of coffee or writing with a pen. Grasping has been highly explored in real environments, to understand and structure the way people grasp and interact with objects by presenting categories, models and theories for grasping approach. Due to the complexity of the human hand, classifying grasping knowledge to provide meaningful insights is a challenging task, which led to researchers developing grasp taxonomies to provide guidelines for emerging grasping work (such as in anthropology, robotics and hand surgery) in a systematic way. While this body of work exists for real grasping, the nuances of grasping transfer in virtual environments is unexplored. The emerging development of robust hand tracking sensors for virtual devices now allow the development of grasp models that enable VR to simulate real grasping interactions. However, present work has not yet explored the differences and nuances that are present in virtual grasping compared to real object grasping, which means that virtual systems that create grasping models based on real grasping knowledge, might make assumptions which are yet to be proven true or untrue around the way users intuitively grasp and interact with virtual objects. To address this, this thesis presents the first user elicitation studies to explore grasping patterns directly in VR. The first study presents main similarities and differences between real and virtual object grasping, the second study furthers this by exploring how virtual object shape influences grasping patterns, the third study focuses on visual thermal cues and how this influences grasp metrics, and the fourth study focuses on understanding other object characteristics such as stability and complexity and how they influence grasps in VR. To provide structured insights on grasping interactions in VR, the results are synthesized in the first VR Taxonomy of Grasp Types, developed following current methods for developing grasping and HCI taxonomies and re-iterated to present an updated and more complete taxonomy. Results show that users appear to mimic real grasping behaviour in VR, however they also illustrate that users present issues around object size estimation and generally a lower variability in grasp types is used. The taxonomy shows that only five grasps account for the majority of grasp data in VR, which can be used for computer systems aiming to achieve natural and intuitive interactions at lower computational cost. Further, findings show that virtual object characteristics such as shape, stability and complexity as well as visual cues for temperature influence grasp metrics such as aperture, category, type, location and dimension. These changes in grasping patterns together with virtual object categorisation methods can be used to inform design decisions when developing intuitive interactions and virtual objects and environments and therefore taking a step forward in achieving natural grasping interaction in VR

    An empirical evaluation of two natural hand interaction systems in augmented reality

    Get PDF
    Human-computer interaction based on hand gesture tracking is not uncommon in Augmented Reality. In fact, the most recent optical Augmented Reality devices include this type of natural interaction. However, due to hardware and system limitations, these devices, more often than not, settle for semi-natural interaction techniques, which may not always be appropriate for some of the tasks needed in Augmented Reality applications. For this reason, we compare two different optical Augmented Reality setups equipped with hand tracking. The first one is based on a Microsoft HoloLens (released in 2016) and the other one is based on a Magic Leap One (released more than two years later). Both devices offer similar solutions for the visualization and registration problems but differ in the hand tracking approach, since the former uses a metaphoric hand-gesture tracking and the latter relies on an isomorphic approach. We raise seven research questions regarding these two setups, which we answer after performing two task-based experiments using virtual elements, of different sizes, that are moved using natural hand interaction. The questions deal with the accuracy and performance achieved with these setups and also with user preference, recommendation and perceived usefulness. For this purpose, we collect both subjective and objective data about the completion of these tasks. Our initial hypothesis was that there would be differences, in favor of the isomorphic and newer setup, in the use of hand interaction. However, the results surprisingly show that there are very small objective differences between these setups, and the isomorphic approach is not significantly better in terms of accuracy and mistakes, although it allows a faster completion of one of the tasks. In addition, no remarkable statistically significant differences can be found between the two setups in the subjective datasets gathered through a specific questionnaire. We also analyze the opinions of the participants in terms of usefulness, preference and recommendation. The results show that, although the Magic Leap-based system gets more support, the differences are not statistically significant

    All Hands on Deck: Choosing Virtual End Effector Representations to Improve Near Field Object Manipulation Interactions in Extended Reality

    Get PDF
    Extended reality, or XR , is the adopted umbrella term that is heavily gaining traction to collectively describe Virtual reality (VR), Augmented reality (AR), and Mixed reality (MR) technologies. Together, these technologies extend the reality that we experience either by creating a fully immersive experience like in VR or by blending in the virtual and real worlds like in AR and MR. The sustained success of XR in the workplace largely hinges on its ability to facilitate efficient user interactions. Similar to interacting with objects in the real world, users in XR typically interact with virtual integrants like objects, menus, windows, and information that convolve together to form the overall experience. Most of these interactions involve near-field object manipulation for which users are generally provisioned with visual representations of themselves also called self-avatars. Representations that involve only the distal entity are called end-effector representations and they shape how users perceive XR experiences. Through a series of investigations, this dissertation evaluates the effects of virtual end effector representations on near-field object retrieval interactions in XR settings. Through studies conducted in virtual, augmented, and mixed reality, implications about the virtual representation of end-effectors are discussed, and inferences are made for the future of near-field interaction in XR to draw upon from. This body of research aids technologists and designers by providing them with details that help in appropriately tailoring the right end effector representation to improve near-field interactions, thereby collectively establishing knowledge that epitomizes the future of interactions in XR

    Human factors in instructional augmented reality for intravehicular spaceflight activities and How gravity influences the setup of interfaces operated by direct object selection

    Get PDF
    In human spaceflight, advanced user interfaces are becoming an interesting mean to facilitate human-machine interaction, enhancing and guaranteeing the sequences of intravehicular space operations. The efforts made to ease such operations have shown strong interests in novel human-computer interaction like Augmented Reality (AR). The work presented in this thesis is directed towards a user-driven design for AR-assisted space operations, iteratively solving issues arisen from the problem space, which also includes the consideration of the effect of altered gravity on handling such interfaces.Auch in der bemannten Raumfahrt steigt das Interesse an neuartigen Benutzerschnittstellen, um nicht nur die Mensch-Maschine-Interaktion effektiver zu gestalten, sondern auch um einen korrekten Arbeitsablauf sicherzustellen. In der Vergangenheit wurden wiederholt Anstrengungen unternommen, Innenbordarbeiten mit Hilfe von Augmented Reality (AR) zu erleichtern. Diese Arbeit konzentriert sich auf einen nutzerorientierten AR-Ansatz, welcher zum Ziel hat, die Probleme schrittweise in einem iterativen Designprozess zu lösen. Dies erfordert auch die Berücksichtigung veränderter Schwerkraftbedingungen
    corecore