6,289 research outputs found

    Automation strategies for sample preparation in life science applications

    Get PDF
    Automation is broadly applied in life science field, with robots playing critical roles. In this dissertation, a platform based on a Yaskawa industrial dual-arm robot (CSDA10F) is presented, which is to automate the sample preparation processes and to integrate analytical instruments. A user-friendly interface has been provided by integrating the platform with SAMI Workstation EX Software. For automating the sample preparation processes, the robot needs to use various commercial tools, including pipette, syringe, microplate, vial, thermo shaker, ultrasonic machine and so on

    Optimization and application of a flexible dual arm robot based automation system for sample preparation and measurement

    Get PDF
    This dissertation describes the optimization of the implementation of the Yaskawa SDA10F dual-arm robot to carry out routine sample preparation tasks in a life science laboratory such that standard lab equipment can be used and the robot can replace humans in sample preparation process. The existing robot control software is changed to carry out various tasks consecutively without interruption. Robot environment and motions were optimized allowing system expansion, multiple batches of samples are made at a time, increasing throughput. The system was validated with the help of two applications

    Dexterous manipulation of unknown objects using virtual contact points

    Get PDF
    The manipulation of unknown objects is a problem of special interest in robotics since it is not always possible to have exact models of the objects with which the robot interacts. This paper presents a simple strategy to manipulate unknown objects using a robotic hand equipped with tactile sensors. The hand configurations that allow the rotation of an unknown object are computed using only tactile and kinematic information, obtained during the manipulation process and reasoning about the desired and real positions of the fingertips during the manipulation. This is done taking into account that the desired positions of the fingertips are not physically reachable since they are located in the interior of the manipulated object and therefore they are virtual positions with associated virtual contact points. The proposed approach was satisfactorily validated using three fingers of an anthropomorphic robotic hand (Allegro Hand), with the original fingertips replaced by tactile sensors (WTS-FT). In the experimental validation, several everyday objects with different shapes were successfully manipulated, rotating them without the need of knowing their shape or any other physical property.Peer ReviewedPostprint (author's final draft

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Automatic generation of robot and manual assembly plans using octrees

    Get PDF
    This paper aims to investigate automatic assembly planning for robot and manual assembly. The octree decomposition technique is applied to approximate CAD models with an octree representation which are then used to generate robot and manual assembly plans. An assembly planning system able to generate assembly plans was developed to build these prototype models. Octree decomposition is an effective assembly planning tool. Assembly plans can automatically be generated for robot and manual assembly using octree models. Research limitations/implications - One disadvantage of the octree decomposition technique is that it approximates a part model with cubes instead of using the actual model. This limits its use and applications when complex assemblies must be planned, but in the context of prototyping can allow a rough component to be formed which can later be finished by hand. Assembly plans can be generated using octree decomposition, however, new algorithms must be developed to overcome its limitations

    Research and development of a rescue robot end-effector

    Get PDF
    Includes abstract.Includes bibliographical references.This report details the research, design, development and testing of an end-effector system for use on an Urban Search and Rescue (USAR) robot which is in development in the Robotics and Agents Research Laboratory (RARL) at the University of Cape Town (UCT). This is the 5th generation Mobile Robot Platform (MRP) that UCT has developed ... codenamed ‘Ratel’. USAR robots used to be mainly of the observation type, but new robots (including UCT’s Ratel MRP) are being developed to deal with inherently dynamic, complex and unpredictable disaster response situations, particularly related to object manipulation and gripping. In order to actively interact with the environment, a flexible and robust gripping system is vital. [an] end-effector solution ... was developed for the Ratel manipulator arm to fulfil these functions

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    Design and Development of Search and Rescue Robot

    Get PDF
    Search and rescue robot is developed mainly to move through rubbles and debris. When a natural disaster such as an earthquake struck causing the building to collapsed, this robot can be used to search for victims and transfer to safe place. Search and rescue robot is equipped with a robotic arm to perform the evacuation process. With this robotic arm, robot can easily grab the victim in collapsed building and bring to safe place. Generally, there is a lot of robot like this used for rescue operation in collapsed building. But non of them is control by using mobile devices. So this paper is purposely designed to develop a prototype of robotic vehicle using mobile devices as controller by using Bluetooth transmission. The distance can vary from 10 meter to 100 meter depending on the type of Bluetooth module used. This robot is powered by Arduino Uno R3 board using 9V AA battery for power supply. In order to control this robot using mobile devices, an application was designed by using MIT Inventor to create an application interface between robot and mobile devices. While for the robotic arm will be design by using Autocad software. In addition, robotic arm will also use four servos to move

    An analysis on controlling humanoid robot arm using Robot Operating System (ROS)

    Get PDF
    Humanoid robots are extensively discussed in modern days. The movement task and manipulation of Humanoid Robots is examined based on mobility of platforms and control of the arm. This project describes a robotic arm that is analogous to an arm of a human being. Some important parameters to be considered are reachability, stability and manipulability. This thesis aims at adapting a humanoid robot arm for performing movement operation that can be used for various purposes. The proposed robot arm has 3 motors on the left arm and 3 motors on the right arm thereby constituting a total of 6 motors. This operation can be achieved by the use of sensor like ultrasonic sensor. Here Beaglebone Black, an open source linux based controller board is used. The Beaglebone Black acts as the main controller for the entire system. A research is also being made to implement the robotic arm using Robot Operating System (ROS) platform. ROS is preferred since it is modular, simple and easy to use tools for development, it provides good hardware support, lots of algorithms are implemented together as package, etc

    The development of a human-robot interface for industrial collaborative system

    Get PDF
    Industrial robots have been identified as one of the most effective solutions for optimising output and quality within many industries. However, there are a number of manufacturing applications involving complex tasks and inconstant components which prohibit the use of fully automated solutions in the foreseeable future. A breakthrough in robotic technologies and changes in safety legislations have supported the creation of robots that coexist and assist humans in industrial applications. It has been broadly recognised that human-robot collaborative systems would be a realistic solution as an advanced production system with wide range of applications and high economic impact. This type of system can utilise the best of both worlds, where the robot can perform simple tasks that require high repeatability while the human performs tasks that require judgement and dexterity of the human hands. Robots in such system will operate as “intelligent assistants”. In a collaborative working environment, robot and human share the same working area, and interact with each other. This level of interface will require effective ways of communication and collaboration to avoid unwanted conflicts. This project aims to create a user interface for industrial collaborative robot system through integration of current robotic technologies. The robotic system is designed for seamless collaboration with a human in close proximity. The system is capable to communicate with the human via the exchange of gestures, as well as visual signal which operators can observe and comprehend at a glance. The main objective of this PhD is to develop a Human-Robot Interface (HRI) for communication with an industrial collaborative robot during collaboration in proximity. The system is developed in conjunction with a small scale collaborative robot system which has been integrated using off-the-shelf components. The system should be capable of receiving input from the human user via an intuitive method as well as indicating its status to the user ii effectively. The HRI will be developed using a combination of hardware integrations and software developments. The software and the control framework were developed in a way that is applicable to other industrial robots in the future. The developed gesture command system is demonstrated on a heavy duty industrial robot
    • 

    corecore