2,487 research outputs found

    DL-Droid: Deep learning based android malware detection using real devices

    Get PDF
    open access articleThe Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches

    TriFlow: Triaging Android Applications using Speculative Information Flows

    Get PDF
    Information flows in Android can be effectively used to give an informative summary of an application’s behavior, showing how and for what purpose apps use specific pieces of information. This has been shown to be extremely useful to characterize risky behaviors and, ultimately, to identify unwanted or malicious applications in Android. However, identifying information flows in an application is computationally highly expensive and, with more than one million apps in the Google Play market, it is critical to prioritize applications that are likely to pose a risk. In this work, we develop a triage mechanism to rank applications considering their potential risk. Our approach, called TRIFLOW, relies on static features that are quick to obtain. TRIFLOW combines a probabilistic model to predict the existence of information flows with a metric of how significant a flow is in benign and malicious apps. Based on this, TRIFLOW provides a score for each application that can be used to prioritize analysis. TRIFLOW also provides an explanatory report of the associated risk. We evaluate our tool with a representative dataset of benign and malicious Android apps. Our results show that it can predict the presence of information flows very accurately and that the overall triage mechanism enables significant resource saving.This work was supported by the MINECO grants TIN2013-46469-R and TIN2016-79095-C2-2-R, and by the CAM grant S2013/ICE-3095

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead
    • …
    corecore