3,128 research outputs found

    Customizable tubular model for n-furcating blood vessels and its application to 3D reconstruction of the cerebrovascular system

    Get PDF
    Understanding the 3D cerebral vascular network is one of the pressing issues impacting the diagnostics of various systemic disorders and is helpful in clinical therapeutic strategies. Unfortunately, the existing software in the radiological workstation does not meet the expectations of radiologists who require a computerized system for detailed, quantitative analysis of the human cerebrovascular system in 3D and a standardized geometric description of its components. In this study, we show a method that uses 3D image data from magnetic resonance imaging with contrast to create a geometrical reconstruction of the vessels and a parametric description of the reconstructed segments of the vessels. First, the method isolates the vascular system using controlled morphological growing and performs skeleton extraction and optimization. Then, around the optimized skeleton branches, it creates tubular objects optimized for quality and accuracy of matching with the originally isolated vascular data. Finally, it optimizes the joints on n-furcating vessel segments. As a result, the algorithm gives a complete description of shape, position in space, position relative to other segments, and other anatomical structures of each cerebrovascular system segment. Our method is highly customizable and in principle allows reconstructing vascular structures from any 2D or 3D data. The algorithm solves shortcomings of currently available methods including failures to reconstruct the vessel mesh in the proximity of junctions and is free of mesh collisions in high curvature vessels. It also introduces a number of optimizations in the vessel skeletonization leading to a more smooth and more accurate model of the vessel network. We have tested the method on 20 datasets from the public magnetic resonance angiography image database and show that the method allows for repeatable and robust segmentation of the vessel network and allows to compute vascular lateralization indices. Graphical abstract: [Figure not available: see fulltext.]</p

    Advanced Neuroimaging with Computed Tomography Scanning

    Get PDF
    International audienceThe x-ray computed tomography (CT) is well known as a useful imaging method and thus CT images have continuingly been used for many applications, especially in medical fields. This book discloses recent advances and new ideas in theories and applications for CT imaging and its analysis. The 16 chapters selected in this book cover not only the major topics of CT imaging and analysis in medical fields, but also some advanced applications for forensic and industrial purposes. These chapters propose state-of-the-art approaches and cutting-edge research results

    Computer simulations in stroke prevention : design tools and strategies towards virtual procedure planning

    Get PDF

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Machine learning approaches for early prediction of hypertension.

    Get PDF
    Hypertension afflicts one in every three adults and is a leading cause of mortality in 516, 955 patients in USA. The chronic elevation of cerebral perfusion pressure (CPP) changes the cerebrovasculature of the brain and disrupts its vasoregulation mechanisms. Reported correlations between changes in smaller cerebrovascular vessels and hypertension may be used to diagnose hypertension in its early stages, 10-15 years before the appearance of symptoms such as cognitive impairment and memory loss. Specifically, recent studies hypothesized that changes in the cerebrovasculature and CPP precede the systemic elevation of blood pressure. Currently, sphygmomanometers are used to measure repeated brachial artery pressure to diagnose hypertension after its onset. However, this method cannot detect cerebrovascular alterations that lead to adverse events which may occur prior to the onset of hypertension. The early detection and quantification of these cerebral vascular structural changes could help in predicting patients who are at a high risk of developing hypertension as well as other cerebral adverse events. This may enable early medical intervention prior to the onset of hypertension, potentially mitigating vascular-initiated end-organ damage. The goal of this dissertation is to develop a novel efficient noninvasive computer-aided diagnosis (CAD) system for the early prediction of hypertension. The developed CAD system analyzes magnetic resonance angiography (MRA) data of human brains gathered over years to detect and track cerebral vascular alterations correlated with hypertension development. This CAD system can make decisions based on available data to help physicians on predicting potential hypertensive patients before the onset of the disease

    The Retinal Microvasculature in Secondary Progressive Multiple Sclerosis

    Get PDF
    In light of new data regarding pathology of multiple sclerosis (MS), more research is needed into the vascular aspects of the disease. Demyelination caused by inflammation is historically thought of as the main cause of disability in the disease. Recent studies, however, have suggested that MS is in fact a spectrum of overlapping phenotypes consisting of inflammation, oxidative damage and hypoperfusion. The microvasculature plays an important role in all of these pathogenic processes and its dysfunction may therefore be of crucial importance to the development and progression of the disease. This thesis focuses on investigating the microvasculature of the retina as a surrogate for the brain by assessing the vascular structure, blood flow dynamics and oxygen transfer of the retinal blood vessels in secondary progressive multiple sclerosis (SPMS). Studying the retinal microvasculature using a multimodal imaging approach has allowed us to develop a more detailed understanding of blood flow in MS and to identify new imaging markers for trials into neuroprotective drugs in MS. The work done in this thesis demonstrated; i) a higher rate of retinal microvascular abnormalities in MS which progresses with disease severity, ii) evidence of retinal vascular remodelling in SPMS and iii) changes in blood velocity and flow in the retina in SPMS. These observations pave the way for future investigations into the mechanisms of vascular alterations and vascular dysfunction in MS, and provide a set of imaging markers to further explore other cerebrovascular diseases through the retina

    Advocating Intraluminal Radiation Therapy in Cerebral Arteriovenous Malformation Treatment

    Get PDF
    In 2014, ARUBA (a randomized trial on cerebral Arteriovenous Malformation – AVM) found patients treated using prevalent interventional strategies are three times more likely to suffer a stroke/die compared with those treated conservatively (blood pressure reduction). Subsequent controversy led the European societies dealing with AVM to organize a consensus conference. Among the statements made was: “There may be indications for treating patients with higher Spetzler-Martin (SM) grades, based on a case-to-case consensus decision of the experienced team”. Thus, a clear accord emerges. There is a lacuna/weakness of interventional modalities when addressing high SM grade AVMs. This lack of a clear treatment choice originated our review. We attempt to identify the advantages and challenges of each present treatment/evaluation modality and highlight core requirements for future strategies. We conclude that existing modalities provide substantial recent improvements, yet the core challenge persists. Finally, we advocate testing a novel modality – intraluminal radiotherapy (active implants) by exploiting the “candy wrapper” or edge effect. If proven effective, this approach could offer gradual vessel occlusion with minimal abrupt hemodynamic changes known to induce hemorrhage, the lowest recurring session number (reduced costs), minimally invasive attributes and very low radiation (dose/dose rate) kinetics minimizing potential Adverse Radiation Effects (AREs)

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy
    • …
    corecore