4,781 research outputs found

    Design and Development of a Class EF2 Inverter and Rectifier for Multi-megahertz Wireless Power Transfer Systems

    Get PDF
    This paper presents the design and implementation of a Class EF2 inverter and Class EF2 rectifier for two -W wireless power transfer (WPT) systems, one operating at 6.78 MHz and the other at 27.12 MHz. It will be shown that the Class EF2 circuits can be designed to have beneficial features for WPT applications such as reduced second-harmonic component and lower total harmonic distortion, higher power-output capability, reduction in magnetic core requirements and operation at higher frequencies in rectification compared to other circuit topologies. A model will first be presented to analyze the circuits and to derive values of its components to achieve optimum switching operation. Additional analysis regarding harmonic content, magnetic core requirements and open-circuit protection will also be performed. The design and implementation process of the two Class-EF2-based WPT systems will be discussed and compared to an equivalent Class-E-based WPT system. Experimental results will be provided to confirm validity of the analysis. A dc-dc efficiency of 75% was achieved with Class-EF2-based systems

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    Load-independent Class EF inverters for inductive wireless power transfer

    No full text
    This paper will present the modelling, analysis and design of a load-independent Class EF inverter. This inverter is able to maintain zero-voltage switching (ZVS) operation and produce a constant output current for any load value without the need for tuning or replacement of components. The load-independent feature of this inverter is beneficial when used as the primary coil driver in multi megahertz high power inductive wireless power transfer (WPT) applications where the distance between the coils and the load are variable. The work here begins with the traditional load-dependent Class EF topology for inversion and then specifies the criteria that are required to be met in order achieve load-independence. The design and development of a 240W load-independent Class EF inverter to drive the primary coil of a 6.78MHz WPT system will be discussed and experimental results will be presented to show the load-independence feature when the distance between the coils of the WPT system changes

    A general theory of phase noise in electrical oscillators

    Get PDF
    A general model is introduced which is capable of making accurate, quantitative predictions about the phase noise of different types of electrical oscillators by acknowledging the true periodically time-varying nature of all oscillators. This new approach also elucidates several previously unknown design criteria for reducing close-in phase noise by identifying the mechanisms by which intrinsic device noise and external noise sources contribute to the total phase noise. In particular, it explains the details of how 1/f noise in a device upconverts into close-in phase noise and identifies methods to suppress this upconversion. The theory also naturally accommodates cyclostationary noise sources, leading to additional important design insights. The model reduces to previously available phase noise models as special cases. Excellent agreement among theory, simulations, and measurements is observed

    A new class of hybrid AC/AC direct power converters

    Get PDF
    Variable voltage and variable frequency conversion of electrical energy from an AC source to an AC load is done in traditional power converters via a DC-link where an energy storage element (electrolytic capacitors) is situated. Despite its well-known benefits, it has the disadvantage of being bulky and to limit the converter lifetime. On the other hand, Direct Power Conversion (DPC) is an attractive concept, which doesn’t need an energy storage buffer, but has two main disadvantages: reduced voltage transfer ratio (<0.86) and low immunity to voltage supply disturbances. This paper proposes a new approach to perform the power conversion by mixing various standard topologies of well-known power converters in order to improve their performance/behavior. Simulation and experimental results prove that the hybrid structures are able to boost the output voltage capability (some above unity) and/or to fully compensate unbalanced voltage supply

    A new class of hybrid AC/AC direct power converters

    Get PDF
    Variable voltage and variable frequency conversion of electrical energy from an AC source to an AC load is done in traditional power converters via a DC-link where an energy storage element (electrolytic capacitors) is situated. Despite its well-known benefits, it has the disadvantage of being bulky and to limit the converter lifetime. On the other hand, Direct Power Conversion (DPC) is an attractive concept, which doesn’t need an energy storage buffer, but has two main disadvantages: reduced voltage transfer ratio (<0.86) and low immunity to voltage supply disturbances. This paper proposes a new approach to perform the power conversion by mixing various standard topologies of well-known power converters in order to improve their performance/behavior. Simulation and experimental results prove that the hybrid structures are able to boost the output voltage capability (some above unity) and/or to fully compensate unbalanced voltage supply

    High Power and High Frequency Class-DE Inverters

    Get PDF
    This thesis investigates the various aspects of the theory. design and construction of a Class-DE type inverter and how these affect the power and frequency limits over which a Class-DE inverter can feasibly be used to produce AC (or RF) power. To this extent. an analysis of Class-DE operation in a half-bridge inverter is performed. A similar approach to Hamill [61 is adopted but a different time reference was used. This allows the concept of a conduction angle to b1: introduced and hence enables a more intuitive understanding of the. equations thereafter. Equations to calculate circuit element values LCR ne1wor'k are developed. The amount above the resonant frequency of the LCR network that the switching frequency must be in order to obtain the correct phase lag of the load current is shown. The effect of a non-linear output capacitance is studied, and equations are modified lo take this effect into account. It was found that a Class-DE topology offers a theoretical power advantage over a Clalls-E topology. However, this power advantage decreases with increasing frequency and is dependent on the output capacitance of the active switching devices. Using currently available MOSFETs, a Class-OE topology has a theoretical power advantage over a Class-E topology up to approximately 10MHz. However, the prac1ical problems of implementing a Class-DE invener lO work into the HF band are formidable. These practical problems and the extent to which they ltml! !he operating frequency and power of a Class-DE type inverter are investigated Guidelines to solving these practical problems are discussed and some novel soluuons are developed that considerably extend the feasible operating frequency and power of a Class-DE inverter. These solutions enabled a brc,adband design of the control circuitry. communication-link and gate-drive to be developed. Using these des[gns, a prototype broadband half-bridge inverter was developed which was capable of switching from 50k.Hz through to 6MHz. When operated in the Class-DE mode, the inverter was found to be capable of delivering a power output of over J kW from SOk.l-lz to 5Mllz with an efficiency of over 91 %. The waveforms obtained from the inverter clearly show Class-OE operation. The results of this thesis prove that a Class-DE series resonant inverter can produce. RF power up to a frequency of 5MHz with a higher combination of power and efficiency than any other present topology. The pracucal problems of even higher operaun& frequencies are discussed and some possible solutions suggested. The mismatched load tolerance of a Class-DE type inverter is briefly investigated. A Class-DE Lype inverter could be used for any applications requiring RF power in the HF band, such as AM or SW rransmirters, induction neating and plasma generators. The information presented in this thesis will be useful 10 designers wishing lo implement such an impeller. In add1non a Class-DE inverter could form the first stage of a highly efficient and high frequency DC-DC converter and the 1nformat1on presented here is directly applicable to such an applicatio
    • …
    corecore