4,112 research outputs found

    Analysis of Link Reversal Routing Algorithms for Mobile Ad Hoc Networks

    No full text
    Link reversal (LR) algorithms provide a simple mechanisme for routing in communication networks whose topology is frequently changing, such as in mobile and ad hoc networks. A LR algorithm routes by imposing a direction on each network link such that the resulting graph is destination oriented (DAG). Whenever a node loses routes to the destination, is reacts by reversing some (or all) of its incident links. This survey presents the worst-case performance analysis of LR algorithms from the excellent work of Costas Busch and Srikanta Tirthapura (SIAM J. on Computing, 35(2):305- 326, 2005). The LR algorithms are studied in terms of work (number of node reversals) and time needed until the algorithm stabilizes to a state in which all the routes are reestablished. The full reversal algorithm and the partial reversal algorithm are considered. • The full reversal algorithm requires O(n2) work and time, where n is the number of nodes that have lost routes to the destination. This bound is tight in the worst case. • The partial reversal algorithm requires O(na*r + n2) work and time, where a*r is a non-negative integral function of the initial state of the network. Further, the partial reversal algorithm requires (na*r + n2) work and time. • There is an inherent lower bound on the worst-case performance of LR algorithms: \Omega(n2). Therefore, surprisingly, the full reversal algorithm is asymptotically optimal in the worst-case, while the partial reversal algorithm is not; since a*r can be arbitrarily larger than n

    An enhanced Multipath Strategy in Mobile Ad hoc Routing Protocols

    Full text link
    The various routing protocols in Mobile Ad hoc Networks follow different strategies to send the information from one node to another. The nodes in the network are non static and they move randomly and are prone to link failure which makes always to find new routes to the destination. This research mainly focused on the study of the characteristics of multipath routing protocols in MANETS. Two of the multipath routing protocols were investigated and a comparative study along with simulation using NS2 was done between DSR and AODV to propose an enhanced approach to reach the destination maintaining the QoS. A possible optimization to the DSR and AODV routing protocols was proposed to make no node to be overburdened by distributing the load after finding the alternate multipath routes which were discovered in the Route discovery process. The simulation shows that the differences in the protocol highlighted major differences with the protocol performance. These differences have been analyzed with various network size, mobility, and network load. A new search table named Search of Next Node Enquiry Table (SONNET) was proposed to find the best neighbor node. Using SONNET the node selects the neighbor which can be reached in less number of hops and with less time delay and maintaining the QoS

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    Store-Forward and its implications for Proportional Scheduling

    Full text link
    The Proportional Scheduler was recently proposed as a scheduling algorithm for multi-hop switch networks. For these networks, the BackPressure scheduler is the classical benchmark. For networks with fixed routing, the Proportional Scheduler is maximum stable, myopic and, furthermore, will alleviate certain scaling issued found in BackPressure for large networks. Nonetheless, the equilibrium and delay properties of the Proportional Scheduler has not been fully characterized. In this article, we postulate on the equilibrium behaviour of the Proportional Scheduler though the analysis of an analogous rule called the Store-Forward allocation. It has been shown that Store-Forward has asymptotically allocates according to the Proportional Scheduler. Further, for Store-Forward networks, numerous equilibrium quantities are explicitly calculable. For FIFO networks under Store-Forward, we calculate the policies stationary distribution and end-to-end route delay. We discuss network topologies when the stationary distribution is product-form, a phenomenon which we call \emph{product form resource pooling}. We extend this product form notion to independent set scheduling on perfect graphs, where we show that non-neighbouring queues are statistically independent. Finally, we analyse the large deviations behaviour of the equilibrium distribution of Store-Forward networks in order to construct Lyapunov functions for FIFO switch networks

    Transience Bounds for Distributed Algorithms

    Get PDF
    International audienceA large variety of distributed systems, like some classical synchronizers, routers, or schedulers, have been shown to have a periodic behavior after an initial transient phase (Malka and Rajsbaum, WDAG 1991). In fact, each of these systems satisfies recurrence relations that turn out to be linear as soon as we consider max-plus or min-plus algebra. In this paper, we give a new proof that such systems are eventually periodic and a new upper bound on the length of the initial transient phase. Interestingly, this is the first asymptotically tight bound that is linear in the system size for various classes of systems. Another significant benefit of our approach lies in the straightforwardness of arguments: The proof is based on an easy convolution lemma borrowed from Nachtigall (Math. Method. Oper. Res. 46) instead of purely graph-theoretic arguments and involved path reductions found in all previous proofs
    • …
    corecore