3,104 research outputs found

    (Co-)Inductive semantics for Constraint Handling Rules

    Full text link
    In this paper, we address the problem of defining a fixpoint semantics for Constraint Handling Rules (CHR) that captures the behavior of both simplification and propagation rules in a sound and complete way with respect to their declarative semantics. Firstly, we show that the logical reading of states with respect to a set of simplification rules can be characterized by a least fixpoint over the transition system generated by the abstract operational semantics of CHR. Similarly, we demonstrate that the logical reading of states with respect to a set of propagation rules can be characterized by a greatest fixpoint. Then, in order to take advantage of both types of rules without losing fixpoint characterization, we present an operational semantics with persistent. We finally establish that this semantics can be characterized by two nested fixpoints, and we show the resulting language is an elegant framework to program using coinductive reasoning.Comment: 17 page

    Experiments with a Convex Polyhedral Analysis Tool for Logic Programs

    Full text link
    Convex polyhedral abstractions of logic programs have been found very useful in deriving numeric relationships between program arguments in order to prove program properties and in other areas such as termination and complexity analysis. We present a tool for constructing polyhedral analyses of (constraint) logic programs. The aim of the tool is to make available, with a convenient interface, state-of-the-art techniques for polyhedral analysis such as delayed widening, narrowing, "widening up-to", and enhanced automatic selection of widening points. The tool is accessible on the web, permits user programs to be uploaded and analysed, and is integrated with related program transformations such as size abstractions and query-answer transformation. We then report some experiments using the tool, showing how it can be conveniently used to analyse transition systems arising from models of embedded systems, and an emulator for a PIC microcontroller which is used for example in wearable computing systems. We discuss issues including scalability, tradeoffs of precision and computation time, and other program transformations that can enhance the results of analysis.Comment: Paper presented at the 17th Workshop on Logic-based Methods in Programming Environments (WLPE2007

    Generalization Strategies for the Verification of Infinite State Systems

    Full text link
    We present a method for the automated verification of temporal properties of infinite state systems. Our verification method is based on the specialization of constraint logic programs (CLP) and works in two phases: (1) in the first phase, a CLP specification of an infinite state system is specialized with respect to the initial state of the system and the temporal property to be verified, and (2) in the second phase, the specialized program is evaluated by using a bottom-up strategy. The effectiveness of the method strongly depends on the generalization strategy which is applied during the program specialization phase. We consider several generalization strategies obtained by combining techniques already known in the field of program analysis and program transformation, and we also introduce some new strategies. Then, through many verification experiments, we evaluate the effectiveness of the generalization strategies we have considered. Finally, we compare the implementation of our specialization-based verification method to other constraint-based model checking tools. The experimental results show that our method is competitive with the methods used by those other tools. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 24 pages, 2 figures, 5 table
    • …
    corecore